Angewandte
Chemie
explored further. It has been shown previously that stereo-
selectivities can be significantly improved by the use of metal
Lewis acids in a chelation-controlled Mukaiyama-type aldol
reaction.[13] We envisaged that Felkin–Anh addition of a silyl
enol ether to a aldehyde, in an open transition state, should
Keywords: aldol reaction · carbohydrates · thioglycosides ·
uronic acids
.
[1] a) A. Varki, Glycobiology 1993, 3, 97 – 130; b) R. A. Dwek,
Chem. Rev. 1996, 96, 683 – 720; c) R. Roy, Drug DiscoveryToday
2004, 1, 327 – 336; D. M. Ratner, E. W. Adams, B. R. Su, J.
OꢀKeefe, M. Mrksich, P. H. Seeberger, ChemBioChem 2004, 5,
379 – 382; d) D. H. Dube, C. R. Bertozzi, Nat. Rev. Drug
Discovery 2005, 4, 477 – 488; e) D. B. Werz, P. H. Seeberger,
Chem. Eur. J. 2005, 11, 3194 – 3206.
preferentially furnish
a glucuronic acid. Indeed, the
MgBr2·Et2O-promoted aldol reaction of the aldehyde 8 and
the silyl enol ether 10 (Method B, Scheme 3) afforded
glucuronic acid 11 in quantitative yield as a single diaster-
eomer.
[2] For recent reviews on oligosaccharide synthesis, see: a) S.
Hanessian, Preparative Carbohydrate Chemistry, Marcel
Dekker, New York, 1997; b) Carbohydrates in Chemistry and
Biology, Vol. 1 (Eds.: B. Ernst, G. W. Hart, P. Sinaþ), Wiley-
VCH, Weinheim, 2000; c) B. Davies, J. Chem. Soc. Perkin Trans.
1 2000, 2137 – 2160; d) P. J. Garegg, Adv. Carbohydr. Chem.
Biochem. 2004, 59, 69 – 113.
The BF3·Et2O-mediated aldol reaction between the selec-
tively protected aldehyde 9 and ketene acetal 10 was also
examined (Scheme 4). Surprisingly, analysis of the crude
[3] a) T. Kanemitsu, O. Kanie, Trends Glycosci. Glycotechnol. 1999,
11, 267 – 276; b) P. H. Seeberger, W. C. Haase, Chem. Rev. 2000,
100, 4349 – 4394; c) O. J. Plante, E. R. Palmacci, P. H. Seeberger,
Science 2001, 291, 1523 – 1527; d) P. Sears, C.-H. Wong, Science
2001, 291, 2344 – 2350; e) O. J. Plante, E. R. Palmacci, R. B.
Andrade, P. H. Seeberger, J. Am. Chem. Soc. 2001, 123, 9545 –
9554; f) P. H. Seeberger, Solid Support Oligosaccharide Syn-
thesis and Combinatorial Carbohydrate Libraries, Wiley, New
York, 2001; g) T. Kanemitsu, O. Kanie, Comb. Chem. High
Throughput Screening 2002, 5, 339 – 360; h) O. J. Plante, P. H.
Seeberger, Curr. Opin. Drug DiscoveryDev. 2003, 6, 521 – 525.
[4] a) T. Ogawa, Chem. Soc. Rev. 1994, 23, 397 – 407; b) S. J.
Danishefsky, M. T. Bilodeau, Angew. Chem. 1996, 108, 1380 –
1419; Angew. Chem. Int. Ed. Engl. 1996, 35, 1482 – 1522; c) T.
Hudlicky, D. A. Entwistle, K. K. Pitzer, A. J. Thorpe, Chem. Rev.
1996, 96, 1195 – 1220.
Scheme 4. Synthesis ofselectively protected d-glucuronic and l-id-
uronic acid building blocks. a) Method A: BF3·Et2O, CH2Cl2, 08C,
15 min, 95% (20/23=3:2); Method B: MgBr2·Et2O, toluene, ꢀ78!
ꢀ308C, 1 h, 98% (only 20); b) 1. FmocCl, pyridine, 2 h; 2. HF·pyridine,
THF, 16 h, 21: 79%, 24: 76% (two steps); c) NIS, CH2Cl2, 15 min,
quant. (22 and 25), (a/b=1:1).
[5] For recent reviews on de novo synthesis of carbohydrates, see:
a) R. R. Schmidt, Pure Appl. Chem. 1987, 59, 415 – 424; b) A.
Kirschning, M. Jesberger, K.-U. Schoning, Synthesis 2001, 507 –
540.
[6] S. Y. Ko, A. W. M. Lee, S. Masamune, L. A. Reed, K. B.
Sharpless, F. J. Walker, Science 1983, 220, 949.
[7] a) T. Mukaiyama, I. Shiina, S. Kobayashi, Chem. Lett. 1990, 12,
2201 – 2204; b) T. Mukaiyama, H. Anan, I. Shiina, S. Kobayashi,
Bull. Soc. Chim. Fr. 1993, 130, 388 – 394.
[8] a) A. B. Northrup, D. W. C. MacMillan, Science 2004, 305, 1752 –
1755; b) D. Enders, C. Grondal, Angew. Chem. 2005, 117, 1235 –
1238; Angew. Chem. Int. Ed. 2005, 44, 1210 – 1212.
[9] For a recent review, see: C. Noti, P. H. Seeberger, Chem. Biol.
2005, 12, 731 – 756.
[10] a) T. Mukaiyama, K. Banno, K. Narasaka, J. Am. Chem. Soc.
1974, 96, 7503 – 7509; b) T. Mukaiyama, Org. React. 1982, 28,
203 – 331.
[11] E. Fischer, Ber. Dtsch. Chem. Ges. 1894, 27, 677.
[12] F. L. van Delft, A. R. P. M. Valentijn, G. A. van der Marel, J. H.
van Boom, J. Carbohydr. Chem. 1999, 18, 165 – 190.
[13] D. A. Evans, M. J. Dart, J. L. Duffy, M. G. Yang, J. Am. Chem.
Soc. 1996, 118, 4322 – 4343.
[14] K. Hattori, H. Yamamoto, J. Org. Chem. 1993, 58, 5301 – 5303.
[15] C. Altona, C. A. G. Haasnoot, Org. Magn. Reson. 1980, 13, 417 –
429.
reaction mixture by 1H NMR spectroscopy showed a 3:2 ratio
of two diastereomers, and only traces of a third. Separation of
the individual isomers followed by protecting-group manip-
ulations and NIS-mediated cyclization led to the isolation of
the pyranoses 22 and 25. Through comparison of the 1H NM R
coupling constants with those of the pyranosides 13 and 16,
thioglycoside 22 was identified as d-glucuronic acid and 25 as
l-iduronic acid. Finally, the BF3·Et2O-mediated aldol reaction
between 9 and 10 (analogous to the reaction of 8 and 10) led
to the formation of the gluco-configured product as the only
detectable diastereomer (Method B, Scheme 4).
In conclusion, a highly convergent route to orthogonally
protected d-glucuronic and l-iduronic acid thioglycoside
building blocks has been developed. Rapid access to sub-
stantial quantities of monosaccharides that contain practical
protecting group patterns and a readily activatable anomeric
leaving group will greatly facilitate oligosaccharide assembly
by using automated methods. The construction of heparin
analogues and the development of efficient routes to further
carbohydrate building blocks are currently under investiga-
tion.
Received: August 4, 2005
Published online: November 3, 2005
Angew. Chem. Int. Ed. 2005, 44, 7605 –7607
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim