4536
J. Am. Chem. Soc. 1999, 121, 4536-4537
Ruthenium Complexes Bearing η5-Pyrazolato
Ligands
Jayani R. Perera, Mary Jane Heeg, H. Bernhard Schlegel, and
Charles H. Winter*
Department of Chemistry, Wayne State UniVersity
Detroit, Michigan 48202
ReceiVed January 12, 1999
Pyrazolato ligands have an extensive coordination chemistry
among the middle to late transition metals and either exhibit η1-
bonding to a single metal or act as bridging ligands between two
metals.1 We and others have recently demonstrated that η2-
pyrazolato ligand coordination is common in the early transition
metals2,3 and is feasible among complexes of the groups 1 and 2
metals.4,5 Among the larger lanthanide and actinide ions, η2-
pyrazolato ligand coordination is most frequently observed6 and
an unusual µ-η2:η2-coordination mode has been recently docu-
mented.7 Conspicuously absent from the literature are complexes
bearing η5-pyrazolato ligands, although the possibility of this
coordination mode has been suggested in several reviews.1 The
lack of complexes bearing η5-pyrazolato ligands is surprising,
since complexes with η5-pyrrolyl ligands are well-known for
metals across the periodic table.8 In the course of exploring
pyrazolato complexes of the early transition metals, we became
interested in investigating the possibility of η5-pyrazolato ligand
coordination. Herein we report the synthesis, structure, and
properties of a series of ruthenium(II) complexes bearing η5-
pyrazolato ligands. This is the first documentation of this
coordination mode in any metal. Molecular orbital calculations
have been carried out on a model ruthenium(II) pyrazolato
complex. The theoretical results demonstrate that η5-pyrazolato
ligands employ orbitals similar to those of η5-cyclopentadienyl
ligands to bond to ruthenium(II) centers, which implies that η5-
pyrazolato ligand coordination should be feasible in many metals.
Figure 1. Perspective view of ((CH3)2C3HN2)(C5(CH3)5)Ru (1) with
thermal ellipsoids at the 50% probability level. Selected bond lengths
(Å) and angles (deg): Ru-C(1) 2.145(3), Ru-C(2) 2.145(3), Ru-C(3)
2.152(3), Ru-C(4) 2.177(3), Ru-C(5) 2.171(3), Ru-C(11) 2.182(3),
Ru-C(12) 2.205(3), Ru-C(13) 2.178(4), Ru-N(1) 2.178(3), Ru-N(2)
2.174(3), Ru-C5(CH3)5(centroid) 1.785(3), Ru-(CH3)2C3HN2(centroid)
1.837(3), C5(CH3)5(centroid)-Ru-(CH3)2C3HN2(centroid) 177.31(13).
Treatment of [(C5(CH3)5)RuCl]49 with 3,5-dimethylpyrazolato-
potassium,4 3,5-diphenylpyrazolato(tetrahydrofuran)potassium,4 or
3,5-di-tert-butylpyrazolatopotassium4 in tetrahydrofuran afforded
(η5-3,5-dimethylpyrazolato)(η5-pentamethylcyclopentadienyl)-
ruthenium(II) (1, 71%), (η5-3,5-di-tert-butylpyrazolato)(η5-pen-
tamethylcyclopentadienyl)ruthenium(II) (2, 72%), or (η5-3,5-
diphenylpyrazolato)(η5-pentamethylcyclopentadienyl)-
ruthenium(II) (3, 71%), as dark green, pale yellow, or dark brown
crystalline solids, respectively (eq 1).10 Complexes 1-3 were
(1) For reviews, see: Cosgriff, J. E.; Deacon, G. B. Angew. Chem., Int.
Ed. 1998, 37, 286. La Monica, G.; Ardizzoia, G. A. Prog. Inorg. Chem. 1997,
46, 151. Sadimenko, A. P.; Basson, S. S. Coord. Chem. ReV. 1996, 147, 247.
Trofimenko, S. Prog. Inorg. Chem. 1986, 34, 115. Trofimenko, S. Chem. ReV.
1972, 72, 497.
(2) Guzei, I. A.; Baboul, A. G.; Yap, G. P. A.; Rheingold, A. L.; Schlegel,
H. B.; Winter, C. H. J. Am. Chem. Soc. 1997, 119, 3387. Guzei, I. A.; Yap,
G. P. A.; Winter, C. H. Inorg. Chem. 1997, 36, 1738. Guzei, I. A.; Winter, C.
H. Inorg. Chem. 1997, 36, 4415.
characterized by spectral and analytical methods, and the molec-
ular structure of 1 was determined by X-ray crystallography. The
presence of π-bound pyrazolato ligands was strongly suggested
by the positions of the pyrazolato ring hydrogen resonances in
(3) Ro¨ttger, D.; Erker, G.; Grehl, M.; Fro¨lich, R. Organometallics 1994,
13, 3897.
(4) Ye´lamos, C.; Heeg, M. J.; Winter, C. H. Inorg. Chem. 1998, 37, 3892.
(5) Pfeiffer, D.; Heeg, M. J.; Winter, C. H. Angew. Chem., Int. Ed. 1998,
37, 2517.
1
the H NMR spectra (1, δ 4.39; 2, δ 4.72; 3, δ 5.59) and of the
hydrogen-substituted carbon resonances in the 13C{1H} NMR
spectra (1, 79.29 ppm; 2, 71.23 ppm, 3, 72.24 ppm). For
comparison, early transition metal complexes bearing η2-pyra-
zolato ligands show resonances for the pyrazolato ring hydrogen
in the 1H NMR spectra between δ 5.94-6.60 and for the
hydrogen-substituted ring carbon in the 13C{1H} NMR between
106 and 113 ppm.2 Complexes 1-3 exhibit irreversible oxidations
at 0.631, 0.600, and 0.702 V, respectively, by cyclic voltammetry
in acetonitrile.11 These values are slightly more positive than the
analogous value for pentamethylruthenocene (E1/2 ) 0.54 V),12
and indicate that the pyrazolato ligands are less electron-donating
(6) For leading references, see: Cosgriff, J. E.; Deacon, G. B.; Gatehouse,
B. M.; Hemling, H.; Schumann, H. Angew. Chem., Int. Ed. Engl. 1993, 32,
874. Deacon, G. B.; Gatehouse, B. M.; Nickel, S.; Platts, S. M. Aust. J. Chem.
1991, 44, 613. Cosgriff, J. E.; Deacon, G. B.; Gatehouse, B. M. Aust. J. Chem.
1993, 46, 1881. Cosgriff, J. E.; Deacon, G. B.; Gatehouse, B. M.; Hemling,
H.; Schumann, H. Aust. J. Chem. 1994, 47, 1223. Deacon, G. B.; Delbridge,
E. E.; Skelton, B. W.; White, A. H. Eur. J. Inorg. Chem. 1998, 543. Culp, T.
D.; Cederberg, J. G.; Bieg, B.; Kuech, T. F.; Bray, K. L.; Pfeiffer, D.; Winter,
C. H. J. Appl. Phys. 1998, 83, 4918.
(7) Deacon, G. B.; Delbridge, E. E.; Skelton, B. W.; White, A. H. Angew.
Chem., Int. Ed. 1998, 37, 2251.
(8) For selected reports of compounds bearing η5-pyrrolyl ligands, see:
Rakowski DuBois, M.; Parker, K. G.; Ohman, C.; Noll, B. C. Organometallics
1997, 16, 2325. Janiak, C.; Kuhn, N. AdV. Nitrogen Heterocycl. 1996, 2, 179.
Schumann, H.; Rosenthal, E. C. E.; Winterfeld, J.; Kociok-Ko¨hn, G. J.
Organomet. Chem. 1995, 495, C12. Schumann, H.; Winterfeld, J.; Hemling,
H.; Kuhn, N. Chem. Ber. 1993, 126, 2657. Kelly, W. J.; Parthun, W. E.
Organometallics 1992, 11, 4348. Kuhn, N.; Henkel, G.; Stubenrauch, S. J.
Chem. Soc., Chem. Commun. 1992, 760. Kuhn, N.; Ko¨ckerling, M.; Stuben-
brauch, S.; Bla¨ser, D.; Boese, R. J. Chem. Soc., Chem. Commun. 1991, 1368.
Kuhn, N.; Kuhn, A.; Lampe, E.-M. Chem. Ber. 1991, 124, 997. Kuhn, N.;
Horn, E.-M.; Boese, R.; Augart, N. Angew. Chem., Int. Ed. Engl. 1989, 28,
342. Kuhn, N.; Horn, E.-M.; Boese, R.; Augart, N. Angew. Chem., Int. Ed.
Engl. 1988, 27, 1368. Kuhn, N.; Horn, E.-M.; Zauder, E.; Bla¨ser, D.; Boese,
R. Angew. Chem., Int. Ed. Engl. 1988, 27, 579. Efraty, A.; Jubran, N. Inorg.
Chim. Acta 1980, 44, L191.
(9) Fagan, P. J.; Ward, M. D.; Calabrese, J. C. J. Am. Chem. Soc. 1989,
111, 1698.
(10) Preparative procedures, spectral data, and analytical data for 1-3 are
contained in the Supporting Information.
(11) The cyclic voltammetry experiments were conducted with a BAS-
100 electrochemical analyzer using a glassy carbon working electrode and a
Ag/AgCl reference electrode. The solvent was acetonitrile containing 0.1 M
tetrabutylammonium hexafluorophosphate. The sweep rate was 100 mV/s. The
reported potential values are for irreversible oxidations. The oxidation
potentials are relative to an internal ferrocene standard (E° ) 0.31 V): Gagne,
R. R.; Koval, C. H.; Lisensky, G. C. Inorg. Chem. 1980, 19, 2854.
10.1021/ja990109a CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/27/1999