2238
M. Napoletano et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2235±2238
Table 2
this class are being produced and the progress in this
area will be reported in the near future.
Compound
Acid secretion
IC50 (ꢀM)
Emesis (dog model)
ED50 (ꢀmol/kg iv)
1 Rolipram
2 (RP 73041)
SB 207499 (Ari¯o)
11
0.04
0.07
1
0.3
1
10
References and Notes
1. Torphy, T. J. Am. J. Respir. Crit. Care Med. 1998, 157,
351.
7
>10 (0/8)
2. Dyke, H. J.; Montana, J. G. Exp. Opin. Invest. Drugs 1999,
8, 1301.
3. Marivet, M. C.; Bourguignon, J. J.; Lugnier, C.; Mann, A.;
Stoclet, J. C.; Wermuth, C. G. J. Med. Chem. 1989, 32, 1450.
4. Reviews: (a) Staord, J. A.; Feldman, P. L. Ann. Rep. Med.
Chem.; Academic: New York, 1996; Chapter 8, pp 71±81. (b)
Davindsen, S. K.; Summers, J. B. Exp. Opin. Ther. Patents
1995, 5, 1087. (c) Palfreyman, M. N.; Souness, J. E. Prog.
Med. Chem. 1996, 33, 1.
5. Ashton, M. J.; Cook, D. C.; Fenton, G.; Karlsson, J.-A.;
Palfreyman, M. N.; Raeburn, D.; Ratclie, A. J.; Souness, J. E.;
Thurairatman, S.; Vicker, N. J. Med. Chem. 1994, 37, 1696.
6. Hulme, C.; Moriarty, K.; Miller, B.; Mathew, R.; Raman-
julu, M.; Cox, P.; Souness, J.; Page, K. M.; Uhl, J.; Travis, J.;
Huang, F.; Labaudiniere, R.; Djuric, S. Bioorg. Med. Chem.
Lett. 1988, 8, 1867.
7. Regan, G.; Bruno, J.; McGarry, D.; Poli, G.; Hanney, B.;
Bower, S.; Travis, J.; Sweeney, D.; Miller, B.; Souness, J.;
Djuric, S. Bioorg. Med. Chem. Lett. 1988, 8, 2737.
8. Hulme, C.; Mathew, R.; Miller, B.; Ramanjulu, M.; Cox,
P.; Souness, J.; Page, K. M.; Uhl, J.; Travis, J.; Labaudiniere,
R.; Huang, F.; Djuric, S. Bioorg. Med. Chem. Lett. 1988, 8,
3053.
9. Barnette, M. S.; Grous, M.; Cieslinsky, L. B.; Burman, M.;
Christensen, S. B.; Torphy, T. J. J. Pharmacol. Exp. Ther.
1995, 273, 1396.
Potent inhibition for PDE4 has been obtained for most
of the phthalazines synthesized and these data well cor-
relate with TNFa inhibition observed. These activities
strongly indicate that a planar dihedral angle between
the phenyl ring and the linker region of rolipram-like
PDE4 inhibitors is allowed. Of the two possible planar
conformations, that represented by phthalazines 11 and
12 (cyclopentyloxy substitution in position 5) is clearly
preferred compared with the substitution in position 7
(compound 24 and 25). The replacement of the nitrogen
with a methylene linker between the phthalazine nucleus
and the pyridine (11 vs 12) does not aect or improves (24
vs 25) the activity, suggesting only a spacer role for this
part of PDE4 inhibitors, at least in this series.
In general, the role of the alkoxy substituents con®rmed
the known structure±activity relationship of rolipram-
derived PDE4 inhibitors.3,16 It is interesting to note the
increased anity for the rolipram-binding site shown by
the bulky, more lipophilic derivatives 13 and 14 compared
to 11. On the contrary, it is worth noting the excellent
selectivity of compounds 29±31, with the alkyl sub-
stituents directly on the aromatic ring, for the catalytic
binding site over the rolipram-binding site. Such selec-
tive binding is a potential property for overcoming the
side eects often seen with potent PDE4 inhibitors.14
10. Schmeichen, R.; Schneider, H. H.; Watchtel, H. Psycho-
pharmacology 1990, 102, 17.
11. The oxidation regiochemistry was assigned on the basis of
the down-shift signal shown by the proton in position 4 in the
1H NMR spectra.
12. Nielson, C. P.; Vestal, R. E.; Sturm, R. J.; Heaslip, R. J.
All. Clin. Immunol. 1990, 86, 801.
Preliminary studies to evaluate the potential side eects
of this novel series were performed comparing phthala-
zine 11 to standards. Their ability to increase acid
secretion in isolated whole rat stomach17 and to induce
emesis in dog18 is reported in Table 2.
13. Schneider, H. H.; Schmiecher, R.; Brezinski, M.; Seidler,
J. Eur. J. Pharmacol. 1986, 127, 105.
14. Barnette, M. S.; Bartus, J. O.; Burman, M.; Christensen,
S. B.; Cieslinski, L. B.; Esser, K. M.; Prabhakar, U. S.; Rush,
J. A.; Torphy, T. J. Biochem. Pharmacol. 1996, 51, 949.
15. Christensen, S. B.; Guider, A.; Forster, C. J.; Gleason, J.
G.; Bender, P. E.; Karpinski, J. M.; DeWolf, W. E., Jr.;
Barnette, M. S.; Underwood, D. C.; Griswold, D. E.;
Cieslinski, L. B.; Burman, M.; Bochnowicz, S.; Osborn, R. R.;
Manning, C. D.; Grous, M.; Hillegas, L. M.; O'Leary Bartus,
J.; Ryan, M. D.; Eggleston, D. S.; Haltiwanger, R. C.;
Torphy, T. J. J. Med. Chem. 1998, 41, 821.
16. Cheng, J. B.; Cooper, K.; Duplantier, A. J.; Eggler, J. F.;
Kraus, K. G.; Marshall, S. C.; Marfat, A.; Masamune, H.;
Shirley, T. J.; Tickner, J. E.; Umland, J. P. Bioorg. Med.
Chem. Lett. 1995, 5, 1969.
17. Brunce, K. T.; Parsons, M. E. J. Physiol. 1976, 453.
18. Emesis method: Male and female beagle dogs (10±12 kg)
were used. Tests compounds were dissolved in PEG200/
DMSO 85/15 and administered by iv injection (3 mL) with an
ascending dose regiment, waiting 1 h between two successive
treatments. The dose that induced emesis in at least four out
eight animals has been determined.
Both the in vitro and the in vivo assays suggested an
improved therapeutic potential for 11. We were very
pleased to verify that, at the maximum solubility
obtainable for 11 in the vehicle, no sign of emesis was
detected. Studies are in progress to verify if this favour-
able behaviour of 11 is the consequence of the improved
selectivity for the catalytic over the high anity roli-
pram-binding site or is due to a preferential anity
toward the PDE4 subtypes.1
In conclusion, the synthesis and in vitro evaluation of a
novel series of potent PDE4 inhibitors has been repor-
ted, demonstrating that the phthalazine nucleus is an
eective, polar scaold to design rolipram-like PDE4
inhibitors. Preliminary results on ecacy and safety of