ChemComm
Please do not adjust margins
Page 4 of 4
ARTICLE
Journal Name
Dend.
Mn
[Da]
Hydrophilic/h
ydrophobic
[%]a
Micellar
diameter
[nm]d
DOI: 10.1039/C8CC02415D
/CPT mol.
PEG Mn
[kDa]
Theoretical
Mn [kDa]
Mn
[kDa]b
Mw/
Mnb
Mn
[kDa]c
CMC [µM
/ ng/ml]
Hybrid
ratio
mPEG5k-(dend-
Ph4)
24 ± 1 /
145 ± 6
5.0
10.0
5.0
1112
2180
1036
2028
82/18
82/18
83/17
83/17
6.1
12.2
6.0
6.2
12.8
6.2
1.06
1.18
1.06
1.13
6.2
11.5
6.1
18 ± 2
31 ± 6
20 ± 2
34 ± 6
2.7 ± 0.8
mPEG10k
-
5 ± 2 /
61 ± 24
0.6 ± 0.1
2.1 ± 0.1
0.6 ± 0.1
(dend-Ph4)2
mPEG5k-(dend-
Hex4)
10 ± 2 /
60 ± 12
mPEG10k
(dend-Hex4)2
3 ± 1 /
36 ± 12
10.0
12.0
12.5
11.9
Table 1: Characterization table of the two series of PEG-dendron hybrids. aweight ratio of PEG/dendron. bmeasured by GPC. c measured by MALDI-TOF dmeasured by DLS.
F. Winnik, S. Zauscher, I. Luzinov and S. Minko, Nat. Mater.,
2010, 9, 101–113.
3
M. Karimi, A. Ghasemi, P. Sahandi Zangabad, R. Rahighi, S. M.
Moosavi Basri, H. Mirshekari, M. Amiri, Z. Shafaei Pishabad, A.
Aslani, M. Bozorgomid, D. Ghosh, A. Beyzavi, A. Vaseghi, A. R.
Aref, L. Haghani, S. Bahrami and M. R. Hamblin, Chem. Soc.
Rev., 2016, 45, 1457–1501.
Conclusions
To summarize, we prepared two pairs of enzyme-responsive
PEG-dendron
hybrids
with
nearly
identical
hydrophilic/hydrophobic ratios that differ in their total
molecular weights. Each of the pairs of amphiphiles was
designed to respond to a different enzyme: an amidase and an
esterase, based on the type of cleavable end-groups. The
amphiphiles were synthesized through high yielding step-
efficient synthesis by a combination of amidation and thiol-yne
reactions. As expected, the 10-kDa-based hybrids had lower
CMC values and formed micelles of larger diameters than the
smaller hybrids. Interestingly, although we kept the overall
polymer concentration (weight %) similar, the larger micelles
could encapsulate approximately twice the amount of CPT,
which was used as model hydrophobic cargo, in comparison
with the smaller micelles. Most importantly, there was a
tremendous difference between the enzymatic responsiveness
and degradation rates for the larger and smaller hybrids for
both enzymes (amidase and esterase) that were tested. The
observed kinetic trends indicate that the absolute molecular
weight of the hydrophobic block strongly affects the enzymatic
responsiveness of the amphiphiles and their assembled
structures. Our results demonstrate the potential utilization of
the overall molecular weight of amphiphiles as a modular tool
for tuning their enzymatic degradation rates, extending the
molecular tool box beyond the more frequently used approach
of adjusting the hydrophilic/hydrophobic ratio.
4
5
6
S. Mura, J. Nicolas and P. Couvreur, Nat. Mater., 2013, 12,
991–1003.
P. Theato, B. S. Sumerlin, R. K. O’Reilly and T. H. Epps, III,
Chem. Soc. Rev., 2013, 42, 7055–7056.
W. L. A. Brooks, G. Vancoillie, C. P. Kabb, R. Hoogenboom and
B. S. Sumerlin, J. Polym. Sci. Part A Polym. Chem., 2017, 55,
2309–2317.
R. de la Rica, D. Aili and M. M. Stevens, Adv. Drug Deliv. Rev.,
2012, 64, 967–978.
S. Samarajeewa, R. P. Zentay, N. D. Jhurry, A. Li, K. Seetho, J.
Zou and K. L. Wooley, Chem. Commun. (Camb)., 2014, 50,
968–70.
M. Zelzer, S. J. Todd, A. R. Hirst, T. O. McDonald and R. V. Ulijn,
Biomater. Sci., 2013, 1, 11–39.
7
8
9
10 G. J. M. Habraken, M. Peeters, P. D. Thornton, C. E. Koning and
A. Heise, Biomacromolecules, 2011, 12, 3761–9.
11 P. D. Thornton and A. Heise, Chem. Commun. (Camb)., 2011,
47, 3108–3110.
12 K. R. Raghupathi, M. a. Azagarsamy and S. Thayumanavan,
Chem. - A Eur. J., 2011, 17, 11752–11760.
13 J. Guo, J. Zhuang, F. Wang, K. R. Raghupathi and S.
Thayumanavan, J. Am. Chem. Soc., 2014, 136, 2220–3.
14 M. A. Azagarsamy, P. Sokkalingam and S. Thayumanavan, J.
Am. Chem. Soc., 2009, 131, 14184–14185.
15 A. J. Harnoy, I. Rosenbaum, E. Tirosh, Y. Ebenstein, R.
Shaharabani, R. Beck and R. J. Amir, J. Am. Chem. Soc., 2014,
136, 7531–7534.
16 I. Gitsov, J. Polym. Sci. Part A Polym. Chem., 2008, 46, 5295–
5314.
17 I. Gitsov, K. L. Wooley and J. M. J. Frechet, Angew. Chemie Int.
Ed. English, 1992, 31, 1200–1202.
Conflicts of interest
There are no conflicts to declare.
18 I. Gitsov, K. L. Wooley, C. J. Hawker, P. T. Ivanova and J. M. J.
Fréchet, Macromolecules, 1993, 26, 5621–5627.
19 A. J. Harnoy, M. Buzhor, E. Tirosh, R. Shaharabani, R. Beck and
R. J. Amir, Biomacromolecules, 2017, 18, 1218–1228.
20 A. J. Harnoy, G. Slor, E. Tirosh and R. J. Amir, Org. Biomol.
Chem, 2016, 14, 5813–5819.
Acknowledgements
21 M. Segal, R. Avinery, M. Buzhor, R. Shaharabani, A. J. Harnoy,
E. Tirosh, R. Beck and R. J. Amir, J. Am. Chem. Soc., 2017, 139,
803–810.
22 E. R. Gillies, T. B. Jonsson and J. M. J. Fréchet, J. Am. Chem.
Soc., 2004, 126, 11936–11943.
RJA thanks the ISF (Grant No. 966/14) for the financial support.
Notes and references
23 V. P. Torchilin, J. Control. Release, 2001, 73, 137–172.
24 C. J. Thomas, N. J. Rahier and S. M. Hecht, Bioorganic Med.
Chem., 2004, 12, 1585–1604.
1
2
V. P. Torchilin, Adv. Drug Deliv. Rev., 2012, 64, 302–315.
M. a C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M.
Stamm, G. B. Sukhorukov, I. Szleifer, V. V Tsukruk, M. Urban,
4 | J. Name., 2012, 00, 1-4
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins