JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
chains of oppositely charged PPVs and PIDPV.59 These prop-
erties suggest that (1)-PIDPV and (2)-PIDPV can be used as
the active matrix in the construction of CPE-based photovol-
taic cells.
10 V. Tamilavan, K. H. Roh, R. Agneeswari, D. Y. Lee, S. Cho,
Y. Jin, S. H. Park, M. H. Hyun, J. Polym. Sci., Part A: Polym.
Chem. 2014, 52, 3564–3574.
11 J. H. Seo, A. Gutacker, B. Walker, S. Cho, A. Garcia, R.
Yang, T.-Q. Nguyen, A. J. Heeger, G. C. Bazan, J. Am. Chem.
Soc. 2009, 131, 18220–18221.
CONCLUSIONS
12 K. Manoli, M. M. Patrikoussakis, M. Magliulo, L. M. Dumitru,
M. Y. Mulla, L. Sabbatini, L. Torsi, Org. Electron. 2014, 15,
2372–2380.
Two novel ID-based conjugated polyelectrolytes (1)-PIDPV
and (2)-PIDPV were synthesized and characterized, and they
both have favorable coverage of the visible light region. The
fluorescence of water-soluble PPV can be quenched by the
oppositely charged PIDPV at a very low concentration. (1)-
PPV shows an efficient quenching effect with KSV 5 1.01 3
106 M21 in the presence of (2)-PIDPV while (2)-PPV gives
a lager quenching constant with KSV 5 1.71 3 106 M21 in
the presence of (1)-PIDPV. The Stern–Volmer plot of the two
PPVs both are curved upward. In the absorption spectra,
PPVs only exhibit a linear superstition with addition of the
oppositely charged PIDPV, which suggests that dynamic
quenching process is dominant in the mechanisms of the
quenching effect. Two conventional polyelectrolytes PDDC
and PSS were also used to investigate the fluorescence
quenching between PPV and polyelectrolytes. The results
show great difference with PPV/PIDPV complexes. The fluo-
rescence of (2)-PPV is strongly quenched by PDDC while
(1)-PPV exhibits a weak enhancement with addition of PSS.
Moreover, in the solid state the fluorescence of the water-
soluble PPVs is also effectively quenched by the oppositely
charged PIDPV. The excellent optic properties which (2)-
PIDPV and (1)-PIDPV exhibit suggest that the two polymers
can become important materials in the fabrication of ionic
double layers solar cells.
13 J. You, T. Park, J. Kim, J. S. Heo, H.-S. Kim, H. O. Kim, E.
Kim, ACS Appl. Mater. Interfaces 2014, 6, 3305–3311.
14 J. H. Lee, D. G. Kim, N. Y. Kwon, G. S. Jang, J. H. Son, M.
Lee, H.-J. Cho, H.-S. Kweon, T. S. Lee, J. Polym. Sci., Part A:
Polym. Chem. 2011, 49, 138–146.
€
15 S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007,
107, 1324–1338.
16 P. W. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov,
Adv. Mater. 2007, 19, 1551–1566.
17 L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, J. Mater. Chem. 2010,
20, 2575–2598.
18 Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S.
Su, Y. Cao, Adv. Mater. 2011, 23, 4636–4643.
19 S. H. Oh, S. I. Na, J. Jo, B. Lim, D. Vak, D. Y. Kim, Adv.
Funct. Mater. 2010, 20, 1977–1983.
20 K. Yao, L. Chen, Y. Chen, F. Li, P. Wang, J. Mater. Chem.
2011, 21, 13780–13784.
21 M. J. Robb, S.-Y. Ku, F. G. Brunetti, C. J. Hawker, J. Polym.
Sci. Part A: Polym. Chem. 2013, 51, 1263–1271.
22 M.-S. Yuan, Q. Fang, L. Ji, W.-T. Yu, Acta Crystallogr. Sect.
E: Struct. Rep. Online 2007, 63, 04342–04342.
ꢀꢁ
ꢁ
ꢁ
ꢁ
23 S. Lunak Jr, B. Frumarova, P. Horakova, Chem. Phys. Lett.
2009, 477, 116–121.
24 X. K. Wee, W. K. Yeo, B. Zhang, V. B. Tan, K. M. Lim, T. E.
Tay, M.-L. Go, Biorg. Med. Chem. 2009, 17, 7562–7571.
25 G. Zhang, Y. Fu, Z. Xie, Q. Zhang, Macromolecules 2011, 44,
1414–1420.
26 X. Xu, P. Cai, Y. Lu, N. S. Choon, J. Chen, X. Hu, B. S. Ong,
J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 424–434.
ACKNOWLEDGMENTS
This work is financially supported by the “Shuangzhi” project
of Sichuan Agricultural University (No. 00770105).
27 W. Elsawy, H. Kang, K. Yu, A. Elbarbary, K. Lee, J.-S. Lee, J.
Polym. Sci., Part A: Polym. Chem. 2014, 52, 2926–2933.
28 P. Salvatori, E. Mosconi, E. Wang, M. Andersson, M. Muccini,
F. De Angelis, J. Phys. Chem. C 2013, 117, 17940–17954.
REFERENCES AND NOTES
29 J. Mei, K. R. Graham, R. Stalder, J. R. Reynolds, Org. Lett.
2010, 12, 660–663.
1 T. I. Wallow, B. M. Novak, J. Am. Chem. Soc. 1991, 113,
7411–7412.
30 Y. Deng, J. Liu, J. Wang, L. Liu, W. Li, H. Tian, X. Zhang, Z.
Xie, Y. Geng, F. Wang, Adv. Mater. 2014, 26, 471–476.
2 C. Qin, Y. Cheng, L. Wang, X. Jing, F, Wang. Macromolecules
2008, 41, 7798–7804.
31 P. Sonar, H.-S. Tan, S. Sun, Y. M. Lam, A. Dodabalapur,
Polym. Chem. 2013, 4, 1983–1994.
3 Z. Gu, Y.-J. Bao, Y. Zhang, M. Wang, Q.-D. Shen,
Macromolecules 2006, 39, 3125–3131.
32 F. Guo, S. Qu, W. Wu, J. Li, W. Ying, J. Hua, Synth. Met.
2010, 160, 1767–1773.
4 X. Xu, W. Cai, J. Chen, Y. Cao, J. Polym. Sci., Part A: Polym.
Chem. 2011, 49, 1263–1272.
33 M. Behnke, B. Tieke, Langmuir 2002, 18, 3815–3821.
5 B. S. Harrison, M. B. Ramey, J. R. Reynolds, K. S. Schanze, J.
Am. Chem. Soc. 2000, 122, 8561–8562.
34 T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, F. Wudl, Chem.
Commun. 2010, 46, 8210–8212.
6 O. Onitsuka, A. Fou, M. Ferreira, B. Hsieh, M. Rubner, J.
Appl. Phys. 1996, 80, 4067–4071.
35 H. Shen, C. Kou, M. He, H. Yang, K. Liu, J. Polym. Sci., Part
A: Polym. Chem. 2014, 52, 739–751.
7 J. W. Baur, S. Kim, P. B. Balanda, J. R. Reynolds, M. F.
Rubner, Adv. Mater. 1998, 10, 1452–1455.
36 K. Liu, Y. Li, G. Zhang, X. Lv, M. Yang, Sens. Actuators, B:
Chem. 2009, 135, 597–602.
8 A. Kimyonok, E. Tekin, G. Haykır, F. Turksoy, J. Lumin. 2014,
146, 186–192.
37 D. A. M. Egbe, H. Tillmann, E. Birckner, E. Klemm,
Macromol. Chem. Phys. 2001, 202, 2712–2726.
9 J. Baur, M. Durstock, B. Taylor, R. Spry, S. Reulbach, L.
Chiang, Synth. Met. 2001, 121, 1547–1548.
38 S. Xiao, S. Wang, H. Fang, Y. Li, Z. Shi, C. Du, D. Zhu,
Macromol. Rapid Commun. 2001, 22, 1313–1318.
2236
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 53, 2223–2237