Organic Letters
Letter
Sun, H.-Y.; Wang, M.; Wu, A.-X. Org. Lett. 2015, 17, 1914. (f) Li, F.; Nie,
J.; Sun, L.; Zheng, Y.; Ma, J.-A. Angew. Chem., Int. Ed. 2013, 52, 6255.
(g) Decuypere, E.; Specklin, S.; Gabillet, S.; Audisio, D.; Liu, H.;
Plougastel, L.; Kolodych, S.; Taran, F. Org. Lett. 2015, 17, 362.
(h) Schmitt, D. C.; Taylor, A. P.; Flick, A. C.; Kyne, R. E., Jr. Org. Lett.
2015, 17, 1405. (i) Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Chem. Commun.
2014, 50, 7677. (j) Zhang, G.; Zhao, Y.; Ge, H. Angew. Chem., Int. Ed.
2013, 52, 2559.
(9) (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
(b) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051. (c) Cavitt,
M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.
(d) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014,
53, 5504. (e) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol.
Chem. 2015, 13, 655.
pyrazolines from di-tert-butyl azodicarboxylate into correspond-
ing 1H-pyrazoles have also been realized, providing a facile access
to biologically important 3-alkoxy 1H-pyrazoles. Further
expansion of the scope and applications in organic synthesis of
this annulation reaction is currently underway in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, characterization data, NMR spectra
Crystallographic data for 3a (CIF)
(10) (a) Ballini, R.; Palmieri, A.; Fiorini, D. ARKIVOC 2007, vii, 172.
(b) Averina, E. B.; Yashin, N. V.; Kuznetsova, T. S.; Zefirov, N. S. Russ.
Chem. Rev. 2009, 78, 887.
Crystallographic data for 4h (CIF)
(11) For typical reports, see: (a) O’Bannon, P. E.; Dailey, W. P.
Tetrahedron 1990, 46, 7341. (b) Wurz, R. P.; Charette, A. B. Org. Lett.
2005, 7, 2313. (c) Lifchits, O.; Charette, A. B. Org. Lett. 2008, 10, 2809.
(d) Lifchits, O.; Alberico, D.; Zakharian, I.; Charette, A. B. J. Org. Chem.
2008, 73, 6838. (e) So, S. S.; Auvil, T. J.; Garza, V. J.; Mattson, A. E. Org.
Lett. 2012, 14, 444. (f) Hardman, A. M.; So, S. S.; Mattson, A. E. Org.
Biomol. Chem. 2013, 11, 5793. (g) Schmidt, C. D.; Kaschel, J.; Schneider,
T. F.; Kratzert, D.; Stalke, D.; Werz, D. B. Org. Lett. 2013, 15, 6098.
(h) Cai, S.; Zhang, S.; Zhao, Y.; Wang, D. Z. Org. Lett. 2013, 15, 2660.
(i) Selvi, T.; Srinivasan, K. J. Org. Chem. 2014, 79, 3653. (j) Selvi, T.;
Srinivasan, K. Chem. Commun. 2014, 50, 10845. (k) Selvi, T.; Srinivasan,
K. Adv. Synth. Catal. 2015, 357, 2111. (l) Selvi, T.; Vanmathi, G.;
Srinivasan, K. RSC Adv. 2015, 5, 49326. (m) Wang, C.; Ren, X.; Xie, H.;
Lu, Z. Chem. - Eur. J. 2015, 21, 9676.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the National Natural Science Foundation
of China (Grant Nos. 21272119, 21472096, J1103306) is
gratefully acknowledged.
(12) (a) Cookson, R. C.; Locke, J. M. J. Chem. Soc. 1963, 6062.
(b) Huisgen, R.; Blaschke, H.; Brunn, E. Tetrahedron Lett. 1966, 7, 405.
(d) Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 513.
(13) For reviews, see: (a) Nair, V.; Biju, A. T.; Mathew, S. C.; Babu, B.
P. Chem. - Asian J. 2008, 3, 810. (b) Xu, S.; He, Z. RSC Adv. 2013, 3,
16885. For typical examples, see: (c) Otte, R. D.; Sakata, T.; Guzei, I. A.;
Lee, D. Org. Lett. 2005, 7, 495. (d) Nair, V.; Biju, A. T.; Vinod, A. U.;
Suresh, E. Org. Lett. 2005, 7, 5139. (e) Nair, V.; Mathew, S. C.; Biju, A.
T.; Suresh, E. Angew. Chem., Int. Ed. 2007, 46, 2070. (f) Cui, S.-L.; Wang,
J.; Wang, Y.-G. Org. Lett. 2008, 10, 13. (g) Lian, Z.; Guan, X.-Y.; Shi, M.
Tetrahedron 2011, 67, 2018. (h) Sankar, M. G.; Garcia-Castro, M.;
Wang, Y.; Kumar, K. Asian J. Org. Chem. 2013, 2, 646.
(14) Yang, C.; Chen, X.; Tang, T.; He, Z. Org. Lett. 2016, 18, 1486.
(15) The nitro group of aliphatic nitro compounds could be readily
replaced by various anions. Kornblum, N.; Boyd, S. D.; Stuchal, F. W. J.
Am. Chem. Soc. 1970, 92, 5783.
(16) The excessive Huisgen zwitterion in the reaction mixture may also
act as a base in the deprotonation.
(17) Early results from the reactions of similar nitrocyclopropanes with
nucleophiles such as sodium methoxide and sodiomalonate could also
be rationalized by this substitution−ring opening rearrangement
mechanism. Kohler, E. P.; Darling, S. F. J. Am. Chem. Soc. 1930, 52, 424.
(18) Another possible pathway to intermediate E is provided in the
Supporting Information, which circumvents the substitution of the nitro
group.
(19) Similar mechanisms involving ester group migration and aza-
Wittig reaction steps are also proposed for the reactions of allenoates
and Huisgen zwitterions. See ref 5c.
REFERENCES
■
(1) For selected reviews, see: (a) Marella, A.; Rahmat Ali, M.; Tauquir
Alam, M.; Saha, R.; Tanwar, O.; Akhter, M.; Shaquiquzzaman, M.;
Mumtaz Alam, M. Mini-Rev. Med. Chem. 2013, 13, 921. (b) Kucu̧ kguzel,
̈
̈
̈
Ş
. G.; S
(2) (a) Rurack, K.; Resch-Genger, U. Chem. Soc. Rev. 2002, 31, 116.
(b) Pettinari, C.; Tabacaru, A.; Galli, S. Coord. Chem. Rev. 2016, 307, 1.
(3) (a) Singer, R. A.; Caron, S.; McDermott, R. E.; Arpin, P.; Do, N. M.
Synthesis 2003, 2003, 1727. (b) Singer, R. A.; Dore, M.; Sieser, J. E.;
Berliner, M. A. Tetrahedron Lett. 2006, 47, 3727. (c) Bellarosa, L.; Díez,
J.; Gimeno, J.; Lledos, A.; Suarez, F. J.; Ujaque, G.; Vicent, C. Chem. -
̧enkardes,̧ S. Eur. J. Med. Chem. 2015, 97, 786.
̌
̌
́
́
́
Eur. J. 2012, 18, 7749. (d) Tian, C.; Gong, L.; Meggers, E. Chem.
Commun. 2016, 52, 4207.
(4) (a) Brogden, R. N. Drugs 1986, 32 (suppl.4), 60. (b) Yang, C.; Li, J.;
Zhou, R.; Chen, X.; Gao, Y.; He, Z. Org. Biomol. Chem. 2015, 13, 4869.
(c) Kuo, S.-C.; Huang, L.-J.; Nakamura, H. J. Med. Chem. 1984, 27, 539.
(d) Stegelmeier, H.; Brandes, W. DE 3243714, 1984.
(5) For syntheses of 3-alkoxy pyrazolines and pyrazoles, see:
(a) Guillou, S.; Janin, Y. L. Chem. - Eur. J. 2010, 16, 4669. (b) Karad,
S. C.; Purohit, V. B.; Raval, D. K. Eur. J. Med. Chem. 2014, 84, 51.
(c) Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett. 2006, 8, 2213.
(d) Chakravarty, M.; Kumar, N. N. B.; Sajna, K. V.; Swamy, K. C. K. Eur.
J. Org. Chem. 2008, 2008, 4500. (e) Yamazaki, S.; Maenaka, Y.; Fujinami,
K.; Mikata, Y. RSC Adv. 2012, 2, 8095.
(6) (a) Elguero, J. In Comprehensive Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, U.K., 1984; Vol. 5, p
167. (b) Yet, L. In Comprehensive Heterocyclic Chemistry III; Katritzky, A.
R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier:
Oxford, U.K., 2008; Vol. 4, p 1.
́ ́ ́
(7) Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A.
Chem. Rev. 2011, 111, 6984. (b) Yet, L. Prog. Heterocycl. Chem. 2011, 23,
231.
(8) For selected recent examples: (a) Zhang, G.; Ni, H.; Chen, W.;
Shao, J.; Liu, H.; Chen, B.; Yu, Y. Org. Lett. 2013, 15, 5967. (b) Wen, J.-J.;
Tang, H.-T.; Xiong, K.; Ding, Z.-C.; Zhan, Z.-P. Org. Lett. 2014, 16,
5940. (c) Vanjari, R.; Guntreddi, T.; Kumar, S.; Singh, K. N. Chem.
Commun. 2015, 51, 366. (d) Zhang, F.-G.; Wei, Y.; Yi, Y.-P.; Nie, J.; Ma,
J.-A. Org. Lett. 2014, 16, 3122. (e) Shu, W.-M.; Zheng, K.-L.; Ma, J.-R.;
D
Org. Lett. XXXX, XXX, XXX−XXX