Journal of the American Chemical Society
Page 4 of 5
(6) For Au-catalyzed Ullmann coupling, see: Karimi, B.; Esfahani,
F. K. Chem. Commun. 2011, 47, 10452–10454.
in the mechanism. In the process B, DMF donates the hydro-
gen to form Cl free intermediate 1B, followed by the oxida-
tive addition of ArCl to form intermediate 1C. Subsequent
reductive elimination of Ar-Ar and HCl would lead to regen-
erate the catalyst. The oxidative addition of second molecule
of ArCl before the participation of DMF may also be possible,
leading to the intermediate 2E (process E). Reductive elimi-
nation of Ar-Ar from 2E would afford the intermediate 2G,
followed by the reduction by DMF to complete the redox
cycle. The preliminary theoretical calculations for these other
steps indicate that the present reaction proceeds smoothly
with low energy barriers after the dissociative chemisorption
of ArCl (Int_B).
1
2
3
4
5
6
7
8
(7) (a) Fanta, P. E. Chem. Rev. 1964, 64, 613–632. (b) Fanta, P. E.
Synthesis 1974, 9–621. (c) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz,
E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–1470. (d) Nelson, T. D.;
Crouch, R. D. Org. React. (Hoboken, NJ, U. S.) 2004, 63, 265–555.
(8) For the recent reports on Ullmann couplings of chloroarenes
under mild conditions, see (a) Li, J.-H.; Xie, Y.-X.; Yin, D.-L. J. Org.
Chem. 2001, 68, 9867–9869. (b) Gallon, B. J.; Kojima, R. W.; Kaner,
R. B.; Diaconescu, P. L. Angew. Chem. Int. Ed. 2007, 46, 7251–7254.
(c) Monopoli, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Angelici, C.;
Cioffi, N.; Nacci, A. J. Org. Chem. 2010, 75, 3908–3911.
(9) For reports on Au:PVP-catalyzed carbon-carbon bond forming
reactions see: (a) Tsukuda, T.; Tsunoyama, H.; Sakurai, H. Chem.
Asian J. 2011, 6, 736–748. (b) Sakurai, H.; Tsunoyama, H.; Tsukuda,
T. J. Organomet. Chem. 2007, 692, 368–374. (c) Tsunoyama, H.; Sa-
kurai, H.; Ichikuni, N.; Negishi, Y.; Tsukuda, T. Langmuir 2004, 20,
11293–11296.
(10) For reports on Pd:PVP-catalyzed carbon–carbon bond-
forming reactions, see: (a) Li, Y.; Hong, X. M. D.; Collard, M.; El-
Sayed, M. A. Org. Lett. 2000, 2, 2385–2388. (b) Ellis, P. J.; Fairlamb, I.
J. S.; Hackett, S. F. J.; Wilson, K.; Lee, A. F. Angew. Chem. Int. Ed.
2010, 49, 1820–1824.
(11) For reports on Au/Pd:PVP-catalyzed reactions, see (a) Dhital,
R. N.; Sakurai, H. Chem. Lett. 2012, 41, 630–632. (b) Yudha S, S.;
Dhital, R. N.; Sakurai, H. Tetrahedron Lett. 2011, 52, 2633–2637. (c)
Hou, W.; Dehm, N. A.; Scott, R. W. J. J. Catal. 2008, 253, 22–27.
(12) The conversions (C) of 1a and 1m were estimated from their
decay as a function of the reaction time (t). The observed linear
relationship between –ln(1–C) and t showed that the reaction is
pseudo-first-order with respect to the substrate (see SI, S6 and S7).
(13) (a) Sakurai, H.; Kamiya, I.; Kitahara, H. Pure Appl. Chem.
2010, 82, 2005–2016. (b) Kamiya, I.; Tsunoyama, H.; Tsukuda, T.;
Sakurai, H. Chem. Lett. 2007, 36, 646–647.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, Ullmann coupling of chloroarene under am-
bient conditions was achieved by using bimetallic Au/Pd
alloy NCs as a catalyst and DMF as both a co-solvent and
reducing agent. We successfully demonstrated the unique
example of bimetallic effect where each monometallic NCs
and their physical mixture did not catalyze the reaction. The
observed synergistic effect of Au/Pd alloy is different from
the reported bimetallic effect where at least one metal is
mainly in charge of catalytic activity. In addition, the unusual
character of bimetallic Au/Pd alloy NCs, which display a
higher catalytic activity towards chloroarenes than for bro-
moarenes, is interesting. We hope our simplified approach
for activation of strong C-Cl bonds might create new oppor-
tunities for the development of designer multimetallic cata-
lyst for C-C coupling reactions.
ASSOCIATED CONTENT
Supporting Information
(14) Bobuatong, K.; Karanjit, S.; Fukuda, R.; Ehara, M.; Sakurai, H.
Phys. Chem. Chem. Phys. 2012, 14, 3103-3111.
(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E. et
al. Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT, 2010.
(16) Corma and co-workers have also shown a similar type of in-
termediate in the oxidative addition of iodobenzene on Au38. See,
Corma, A.; Juárez, R.; Boronat, M.; Sánchez, F.; Iglesias, M.; García,
H. Chem. Commun. 2011, 47, 1446–1448.
Experimental details, characterization, kinetics data and oth-
er theoretical results. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
hsakurai@ims.ac.jp, ehara@ims.ac.jp
ACKNOWLEDGMENT
This work was supported by ACT-C (JST).
REFERENCES
(1) (a) Ferrando, R.; Jellineck, J.; Johnston, R. L. Chem. Rev. 2008,
108, 845–910. (b) Toshima, N.; Yonezawa, T. New J. Chem. 1998, 22,
1179–1201. (c) Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen,
C. H. Nat. Chem. 2009, 1, 37–46.
(2) (a) Hutchings, G. J. Chem. Commun. 2008, 1148–1164. (b)
Chen, M.; Kumar, D.; Yi, C. -W.; Goodman, D. W. Science 2005, 310,
291–293. (c) Landon, P. L.; Collier, P. J.; Carley, A. F.; Chadwick, D.;
Papworth, A. J.; Burrows, A.; Kiely, C. J.; Hutchings, G. J. Phys. Chem.
Chem. Phys. 2003, 5, 1917-1923. (d) Gao, F.; Goodman, D. W. Chem.
Soc. Rev. 2012, 41, 8009-8020. (e) Zhang, H.; Watanabe, T.; Okumu-
ra, M.; Haruta, M.; Toshima, N. Nat. Mater. 2012, 11, 49-52.
(3) (a) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176–
4211. (b) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L.
J. Am. Chem. Soc. 2005, 127, 4685–4696.
(4) (a) Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174–2185. (b)
Ullmann, F.; Justus Liebigs Ann. Chem. 1904, 332, 38–81.
(5) Larock, R. C. Comprehensive Organic Transformations: A
Guide to Functional Group Preparations, 2nd ed.; Wiley: New York,
1999.
ACS Paragon Plus Environment