K. Gul et al. / Tetrahedron Letters 52 (2011) 3592–3596
3595
Ed. Jovem Pesquisador em Nanotecnologia), Capes and FAPERGS
for their financial support.
Ph
X
Ph
Se
NHBoc
NHBoc
Ph
S
NHBoc
SnCl2 / CuBr2
[bmim]BF4/rt
PhY)2
Supplementary data
X = OMs; Time: 180 min, 69% 15b
X = OMs, Time: 120 min, 75% 15a
X = Br; Time: 120 min, 71% 15a
X = Br;
Time: 180 min, 62% 15b
Y = S, Se
Supplementary data (synthetic procedures and compounds
characterisation data) associated with this article can be found,
Figure 3. Synthesis of chiral b-sulfur and seleno amines.
References and notes
SnCl2/CuBr2
[bmim]BF4
Y
R
X
Y
1. For selenium-containing chiral ligands, see: (a) Wirth, T. Organoselenium
Chemistry–Modern Developments in Organic Synthesis. In Topics in Current
Chemistry 208; Springer: Heidelberg, Germany, 2000; (b) Wirth, T. Angew.
Chem., Int. Ed. 2000, 39, 3740–3749; (c) Braga, A. L.; Lüdtke, D. S.; Vargas, F.
Curr. Org. Chem. 2006, 10, 1921–1938.
2. (a) Mukherjee, C.; Tiwari, P.; Misra, A. K. Tetrahedron Lett. 2006, 47, 441–445;
(b) Tiwari, P.; Misra, A. K. Tetrahedron Lett. 2006, 47, 2345–2348.
3. (a) Phadnis, P. P.; Mugesh, G. Org. Biomol. Chem. 2005, 3, 2476–2481; (b) Braga,
A. L.; Schneider, P. H.; Paixão, M. W.; Deobald, A. M.; Peppe, C.; Bottega, D. P. J.
Org. Chem. 2006, 71, 4305–4307.
R
Y
Y = S, Se
X = Cl,Br; R = Bz rt
S
100
90
80
70
60
50
40
30
20
10
0
92
90
Se
88
87
86
84
82
80
77
73
4. (a) Braga, A. L.; Lüdtke, D. S.; Paixão, M. W.; Alberto, E. E.; Stefani, H. A.; Juliano,
L. Eur. J. Org. Chem. 2005, 20, 4260–4264; (b) Schwab, R. S.; Soares, L. C.;
Dornelles, L.; Rodrigues, O. E. D.; Paixão, M. W.; Godoi, M.; Braga, A. L. Eur. J.
Org. Chem. 2010, 3574–3578.
5. (a) Mugesh, G.; Du Mont, W. W.; Sies, H. Chem. Rev. 2001, 101, 2125–2180; (b)
Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255–6286; (c)
Alberto, E. E.; Nascimento, V.; Braga, A. L. J. Braz. Chem. Soc. 2010, 21, 2032–
2041.
6. (a)Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon
Press Ltd.: New York, 1991. Vol. 6; (b) Metzner, P.; Thuillier, A. Sulfur Reagents
in Organic Synthesis In Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.;
Academic Press: San Diego, CA, 1994.
Fresh
2nd Run
3rd Run
4th Run
5th Run
Figure 4. Recyclability of [bmim]BF4.
7. For general reviews on sulfides, see: (a) Jones, D. N. In Comprehensive Organic
Chemistry; Barton, D. H. R., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979. pp
33–103, Vol 3; (b)Organic Sulfur Chemistry Structure and Mechanism; Oae, S.,
Ed.; CRC Press: Boca Raton, FL, 1991.
liquids is a highly versatile way to create C–Se and C–S bonds in a
stereo-controlled manner.3,19 Hence, we focused our attention on
the synthesis of chiral b-sulfur and seleno amines which can be ob-
tained from the reaction of b-amino mesylate and bromo deriva-
tive31 with diphenyl diselenide/disulfide to give the
corresponding b-amino sulfur and seleno derivatives, as depicted
in Figure 3.
Using our standard reaction conditions it was possible to verify
the versatility of the methodology, allowing the synthesis of di-
verse organochalcogenium compounds from different functional-
ities. The results revealed the same behavior affording sulfide
derivatives in higher yield as compared with selenides.
To further explore the scope of our method, and in an effort to
obtain an environmentally benign protocol, we examined the pos-
sibility of reusing the reaction media. Accordingly, after the work-
up (see Supplementary data) the ionic liquid was recovered and
then used in additional runs. In a positive response, the yield
was found to be similar to that obtained in the first run (Fig. 4;
run 2). This operation was repeated three more times as depicted
in Figure 4.
In summary, herein we describe an efficient methodology for
the preparation of diorganyl selenides and sulfides from the corre-
sponding alkyl and aryl halides. Some important aspects of this
methodology are the high reactivity in the preparation of the dif-
ferent organochalcogen compounds, with very short reaction
times, mild reaction conditions, room temperature, and excellent
yields using an ionic liquid as a reusable solvent. The methodology
shows a wide versatility, allowing the synthesis of different classes
of organochalcogen compounds. Ongoing investigations into the
application of this methodology are underway in our laboratory.
8. (a) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387–394; (b) Herradura, P. S.;
Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2, 2019–2022. and references therein.
9. (a) Yoshimatsu, M.; Sato, T.; Shimizu, H.; Hori, M.; Kataoka, T. J. Org. Chem.
1994, 59, 1011–1019; (b) Andreadou, I.; Menge, W. M. P. B.; Commandeur, J. N.
M.; Worthington, E. A.; Vermeulen, N. P. E. J. Med. Chem. 1996, 39, 2040–2046;
(c) Nishino, T.; Okada, M.; Kuroki, T.; Watanabe, T.; Nishiyama, Y.; Sonoda, N. J.
Org. Chem. 2002, 67, 8696–8698; (d) Ranu, B. C.; Mandal, T.; Samanta, S. Org.
Lett. 2003, 5, 1439–1441; (e) Ranu, B. C.; Mandal, T. J. Org. Chem. 2004, 69,
5793–5795; (f) Cohen, R. J.; Fox, D. L.; Salvatore, R. N. J. Org. Chem. 2004, 69,
4265–4268; (g) Bonaterra, M.; Martín, S. E.; Rossi, R. A. Tetrahedron Lett. 2006,
47, 3511–3515.
10. (a) Dowsland, J.; McKerlie, F.; Procter, D. J. Tetrahedron Lett. 2000, 41, 4923–
4927; (b) Su, W.; Gao, N.; Zhang, Y. J. Chem. Research, Synopses 2002, 4, 168–
169; (c) Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915–920; (d) de
Andrade, F. M.; Massa, W.; Peppe, C.; Uhl, W. J. Organomet. Chem. 2005, 690,
1294–1299; (e) Wang, L.; Wang, M.; Huang, F. Synlett 2005, 2007–2010; (f)
Ajiki, K.; Hirano, M.; Tanaka, K. Org. Lett. 2005, 7, 4193–4195.
11. (a) Krief, A.; Derock, M.; Lacroixa, D. Synlett 2005, 2832–2834; (b) Santi, C.;
Santoro, S.; Battistelli, B.; Testaferri, L.; Tiecco, M. Eur. J. Org. Chem. 2008, 5387–
5390; (c) Santoro, S.; Battistelli, B.; Testaferri, L.; Tiecco, M.; Santi, C. Eur. J. Org.
Chem. 2009, 4921–4925; (d) Narayanaperumal, S.; Alberto, E. E.; Gul, K.;
Rodrigues, O. E. D.; Braga, A. L. J. Org. Chem. 2010, 75, 3886–3889.
12. (a) Nishiyama, Y.; Tokunaga, K.; Sonoda, N. Org. Lett. 1999, 1, 1725–1727; (b)
Braga, A. L.; Schneider, P. H.; Paixão, M. W.; Deobald, A. M. Tetrahedron Lett.
2006, 47, 7195–7198; (c) Ouchi, A.; Liu, S.; Li, Z.; Kumar, S. A.; Suzuki, T.;
Hyugano, T.; Kitahara, H. J. Org. Chem. 2007, 72, 8700–8706.
13. (a) Kundu, A.; Prabhakar, S.; Vairamani, M.; Roy, S. Organometallics 1997, 16,
4796–4799; (b) Kundu, A.; Roy, S. Organometallics 2000, 19, 105–107; (c) Sinha,
P.; Kundu, A.; Roy, S.; Prabhakar, S.; Vairamani, M.; Ravi Sankar, A.; Kunwar, A.
C. Organometallics 2001, 20, 157–162.
14. (a) Tang, R.; Zhong, P.; Lin, Q. Synthesis 2007, 1, 85–91; (b) Sureshkumar, D.;
Ganesh, V.; Vidyarini, R. S.; Chandrasekaran, S. J. Org. Chem. 2009, 74, 7958–
7961.
15. (a) Wulff, G. Chem. Rev. 2002, 102, 1–27; (b)Ionic Liquids in Synthesis;
Wasserscheid, P., Welton, T., Eds.; Wiley-VCH: Weinheim, Germany, 2002.
16. For a comprehensive review about ionic liquids see: (a) Wasserscheid, P.; Keim,
W. Angew. Chem., Int. Ed. 2000, 39, 3772–3789; (b) Dupont, J.; de Souza, R. F.;
Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667–3692; (c) Cassol, C. C.; Ebeling, G.;
Ferrera, B.; Dupont, J. Adv. Synth. Catal. 2006, 348, 243–248.
17. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2084; (b) Earle, M. J.; Seddon, K. R.
Pure Appl. Chem. 2000, 72, 1391–1398; (c) Sheldon, R. A. Chem. Commun.
(Cambridge) 2001, 2399–2407.
18. (a) Narayanaperumal, S.; Alberto, E. E.; de Andrade, F. M.; Lenardão, E. J.; Taube,
P. S.; Braga, A. L. Org. Biomol. Chem. 2009, 7, 4647–4650; (b) Braga, A. L.; Vargas,
F.; Zeni, G.; Silveira, C. C.; Andrade, L. H. Tetrahedron Lett. 2002, 43, 4012–4399;
Acknowledgments
Kashif and Senthil are recipients of TWAS-CNPq doctoral fel-
lowships and cordially acknowledge their financial support. We
are also obliged to CNPq (INCT-Catálise, INCT-NANOBIOSIMES,