162
G. R. Morais et al. / Carbohydrate Research 345 (2010) 160–162
AcO
(dd, 1H, H-3ax, J3ax,4 12.0 Hz, J3ax,3eq 12.7 Hz), 2.68 (dd, 1H, H-3eq,
AcO
COOMe
R
COOMe
SSAc
AcO
ICH2CH3
AcO
OAc
OAc
J3eq,4 4.8 Hz, J3ax,3eq 12.7 Hz), 2.75–2.85 (m, 2H), 3.80 (s, 3H,
COOMe), 3.96 (dd, 1H, H-6, J6,7 1.3 Hz, J5,6 10.6 Hz), 4.00–4.05 (m,
1H, H-5), 4.11 (dd, 1H, H-9a, J8,9a 5.0 Hz, J9a,9b 12.4 Hz), 4.36 (dd,
1H, H-9b, J8,9b 2.4 Hz, J9a,9b 12.4 Hz), 4.85–4.90 (m, 1H, H-4), 5.24
(d, 1H, NH, J5,NH 9.9 Hz), 5.26–5.30 (m, 2H, H-7 and H-8); 13C
NMR (CDCl3) d 13.69, 20.81, 20.88, 20.92, 21.19, 23.30, 33.78,
37.10, 49.57, 53.15, 62.12, 67.41, 69.51, 69.72, 88.93, 74.77,
168.11, 170.10, 170.25, 170.78, 171.09, 171.12; ES+ MS
C22H33O2NS2 (567.63) m/z (%) 590 [M+Na]+ (100); HRMS (ES+)
found 585.1783, calcd for C22H37O12N2S2 585.1782 [M+NH4]+.
O
O
AcHN
AcHN
Et2NH
OAc
OAc
6
4 R = SEt (50%)
8 R = SSEt (50%)
Scheme 4. Alkylation of acetyl disulfide 6.
The mechanism by which acetyl disulfide 6 is formed in the
reaction outlined in Scheme 1 is not certain. It was hypothesised,
however, that oxidation of KSAc produces diacetyl disulfide, which
further reacts to yield AcSSꢀ and AcSAc.
Acknowledgements
It is possible that chlorosialoside 1 may undergo nucleophilic
attack by the acetyl disulfide anion, to yield SSAc 6 directly. Prep-
aration of AcSSAc25 and subsequent reaction with chlorosialoside 1
proved this not to be the case. However, on repeating this reaction
in the presence of KSAc, SSAc 6 was obtained almost exclusively.
Interestingly, treatment of purified thioacetate 2 with a batch of
KSAc that had promoted extensive disulfide formation also led to
the formation of SSAc 6, suggesting that the source of 6 is actually
thioacetate 2. This would require either reaction of AcSSAc with
thioacetate 2, via a radical-based mechanism, or by reaction with
AcSAc. Auto-oxidation of thioacetic acid by air and light has also
been observed26 and may be significant. Further studies are re-
quired to understand this reaction further.
All three compounds (i.e., 2, 3 and 6) co-elute on thin layer
chromatography plates and during flash chromatography. Prepara-
tive HPLC is required for effective separation. SSAc 6 has since been
synthesised and purified from thiosialoside 7 using a similar meth-
odology employed in the synthesis of ethyl disulfide 8, and further
confirmed the identity of compound X.
This work was supported by the EPSRC (G.R.M.), the Association
for International Cancer Research (A.J.H.) and Yorkshire Cancer
Research (R.A.F.). The authors thank Andrew Healey for running
low resolution mass spectra and the EPSRC National Mass
Spectrometry Service Centre, University of Wales, Swansea, for
high resolution accurate mass measurements. Dr. Kamyar Afarin-
kia, Dr. Klaus Pors and Dr. Helen Sheldrake are thanked for useful
discussions.
Supplementary data
Supplementary data associated with this article can be found, in
References
1. Procter, D. J. J. Chem. Soc., Perkin Trans. 1 2000, 835–871.
2. (a) Morais, G. R.; Humphrey, A. J.; Falconer, R. A. Carbohydr. Res. 2009, 344, 1039–
1045; (b) Morais, G. R.; Humphrey, A. J.; Falconer, R. A. Tetrahedron 2008, 64,
7426–7431; (c) Falconer, R. A.; Toth, I. Bioorg. Med. Chem. 2007, 15, 7012–7020;
(d) Falconer, R. A.; Jablonkai, I.; Toth, I. Tetrahedron Lett. 1999, 40, 8663–8666.
3. Morais, G. R.; Falconer, R. A. Tetrahedron Lett. 2007, 48, 7637–7641.
4. Davis, B. G.; Ward, S. J.; Rendle, P. M. Chem. Commun. 2001, 189–190.
5. Varki, A. Glycobiology 1992, 2, 25–40.
In summary, unexpected observations during the synthesis of
thiosialosides are described. The synthesis of thiosialosides using
KSAc leads to disulfide by-product formation, which is extremely
variable and dependent on the commercial source of KSAc.
6. Zhang, P.; Zuccolo, A. J.; Li, W.; Zheng, R. B.; Ling, C. C. Chem. Commun. 2009,
4233–4235.
7. Witczak, Z. J. Curr. Med. Chem. 1999, 6, 165–178.
1. Experimental
8. Boysen, M. M. K. Chem. Eur. J. 2007, 13, 8649–8659.
9. Warner, T. G.; Lee, L. A. Carbohydr. Res. 1988, 176, 211–218.
10. Morais, G. R.; Oliveira, R. S.; Falconer, R. A. Tetrahedron Lett. 2009, 50, 1642–1644.
11. Meindl, P.; Tuppy, H. Monatsh. Chem. 1969, 1295–1306.
12. Schreiner, E.; Zbiral, E.; Kleineidam, R. G.; Schauer, R. Liebigs Ann. Chem. 1991,
129–134.
13. Zbiral, E.; Brandstetter, H. H.; Christian, R.; Schauer, R. Liebigs Ann. Chem. 1987,
781–786.
14. von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T.
V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.;
Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C.
R. Nature 1993, 363, 418–423.
1.1. Characterisation of compounds 6 and 8
1.1.1. Methyl 2-(acetylsulfanyl)-5-acetamido-4,7,8,9-tetra-O-
acetyl-2,3,5-trideoxy-2-thio-
pyranosonate (6)
a-D-glycero-D-galacto-2-nonulo
½
a 2D0 +155.0 1.0 (c 0.85, CH2Cl2); 1H NMR (CDCl3) d 1.88 (s, 3H,
ꢂ
NAc), 2.02, 2.04, 2.12 (3s, 12H, 4OAc), 2.07 (dd, 1H, H-3ax, J3ax,4
9.4 Hz, J3ax,3eq 12.2 Hz), 2.46 (s, 3H, SAc), 2.81 (dd, 1H, H-3eq,
J3eq,4 4.4 Hz, J3ax,3eq 12.2 Hz), 3.77 (s, 3H, COOMe), 3.86 (d, 1H,
H-6, J5,6 9.4 Hz), 4.00–4.05 (m, 1H, H-5), 4.12 (dd, 1H, H-9a, J8,9a
4.7 Hz, J9a,9b 12.1 Hz), 4.34 (d, 1H, H-9b, J9a,9b 12.1 Hz), 4.83–4.88
(m, 1H, H-4), 5.21 (d, 1H, NH, J5,NH 10.8 Hz), 5.31 (br s, 2H, H-7,
and H-8); 13C NMR (CDCl3) d 20.87 (2C), 20.90, 21.24, 23.20,
28.81, 37.07, 49.45, 53.50, 62.01, 67.23, 69.04, 69.57, 74.44,
84.72, 166.85, 170.00, 170.18, 170.80, 170.89, 192.51; ES+ MS
C22H31NO13S2 (581.14) m/z (%) 582.2 [M+H]+ (30), 604.2 [M+Na]+
(100); HRMS (ES+) found 599.1575, calcd for C22H35O13N2S2
599.1575 [M+NH4]+.
15. Miller, C. A.; Wang, P.; Flashner, M. Biochem. Biophys. Res. Commun. 1978, 83,
1479–1487.
16. Chong, A. K. J.; Pegg, M. S.; Taylor, N. R.; von Itzstein, M. Eur. J. Biochem. 1992,
207, 335–343.
17. Smith, P. W.; Starkey, I. D.; Howes, P. D.; Sollis, S. L.; Keeling, S. P.; Cherry, P. C.;
von Itzstein, M.; Wu, W. Y.; Jin, B. Eur. J. Med. Chem. 1996, 31, 143–150.
18. Groves, D. R.; Bradley, S. J.; Rose, F. J.; Kiefel, M. J.; von Itzstein, M.
Glycoconjugate J. 1999, 16, 13–17.
19. Bennett, S.; von Itzstein, M.; Kiefel, M. J. Carbohydr. Res. 1994, 259, 293–299.
20. Lubineau, A.; Legallic, J. J. Carbohydr. Chem. 1991, 10, 263–268.
21. Schank, K.; Werner, F. Liebigs Ann. Chem. 1979, 1977–1991.
22. Schank, K.; Frisch, A.; Zwanenburg, B. J. Org. Chem. 1983, 48, 4580–4582.
23. Cohen, S. B.; Halcomb, R. L. J. Org. Chem. 2000, 65, 6145–6152.
24. Hummel, G.; Hindsgaul, O. Angew. Chem., Int. Ed. 1999, 38, 1782–1784.
25. Bonner, W. A. J. Am. Chem. Soc. 1950, 72, 4270–4271.
26. Gautron, J. Histochemistry 1982, 76, 469–478.
1.1.2. Methyl 2-(ethylsulfanyl)-5-acetamido-4,7,8,9-tetra-O-ace
tyl-2,3,5-trideoxy-2-thio-
nosonate (8)
a-D-glycero-D-galacto-2-nonulopyra-
½
a 2D0 +33.0 1.0 (c 0.63, CH2Cl2); 1H NMR (CDCl3) d 1.30 (t, 3H, J
ꢂ
7.4 Hz), 1.90 (s, 3H, NAc), 2.02, 2.03, 2.10, 2.14 (4s, 12H, 4OAc), 2.25