1072
A. ätimac et al.
LETTER
(2JC(1’),F = 17.1 ± 0.0 Hz) was found to be highly diagnostic
for the b-configuration.23
(13) Typical experimental procedure for the Dimroth reaction of
1a with DOG: To a solution of 1a (24.40 g, 50 mmol) and
DOG (17.4 g, 100 mmol) in DMSO (60 mL) was added dried
and finely ground K2CO3 (6.9 g, 50 mmol). The
In conclusion, we have developed an efficient method for
the stereospecific formation of single N-1(3)-glycosylated
1,2,3-triazole regioisomers, convertible to a variety of 8-
aza-3-deazapurine nucleosides. In this work, an efficient
route for the preparation of 8-aza-3-deazaguanine nucleo-
sides was demonstrated, however, by a proper choice of
synthetic methods, derivatives with diverse substitution
pattern (8-aza-3-deazaadenines, -xanthines, -hypoxan-
thines, etc.) should be accessible. The dinitrile 6c, for ex-
ample, which was more conveniently prepared by
dehydration of both carboxamide groups of 4c, was found
to be a useful precursor to 8-aza-3-deazaisoguanosine.24
heterogeneous mixture was stirred at room temperature for 15
h and poured into an ice-water mixture (0.5 L). The solid was
filtered and washed with water (1 L). The filter cake was
dissolved in ethyl acetate (300 mL), the organic phase was
washed with 1 M Na2CO3 (2 x 200 mL), 0.1 M HCl (200 mL)
and brine (200 mL) and dried (Na2SO4). Concentration
afforded almost colorless foam (32.6 g), which was
crystallized from methanol to give 2a (30.48 g, 95%) as very
small needles with mp 110-113 °C; 1H NMR(300 MHz,
CDCl3): d 3.69, 3.94 (2 s, 6, 2 CH3), 4.18, 4.39 (2d, 2, CH2;
J
gem 17.1 Hz), 4.51 (dd, 1, H-5'a; J5’a,5’b 12.2, J4’,5’a 4.6 Hz), 4.80
(dd, 1, H-5'b; J4’,5’b 3.5 Hz), 4.90 (ddd, 1, H-4'), 6.24 (dd, 1, H-
3'; J2’,3’5.1, J3’,4’7.1 Hz), 6.36 (d, 1, H-1'; J1’,2’1.95 Hz), 6.58
(dd, 1, H-2'), 7.34-7.63 and 7.92-8.05 (2m, 15, Ar-H). 13
C
NMR(75.4 MHz, CDCl3): d 28.7 (CH2), 52.0, 52.8 (2 CH3),
63.0 (C-5'), 71.4 (C-3'), 74.9 (C-2'), 81.3 (C-4'), 89.1 (C-1'),
128.3-133.8 (Ph-C), 135.8, 137.5 (C-4, 5), 161.3, 164.9,
165.0, 165.9, 167.7 (5 CO). IR (film):1732 (C=O), 1268
(benzoate C-O), 1124 (PhCOO-C), 712 cm-1 (benzoate). MS
(EI): m/z 643 (M+), 445 ([M-B]+, 9%), 105 (100). Anal. calcd
for C33H29N3O11 (643.61): C, 61.58; H, 4.54; N, 6.53. Found:
C, 61.53; H, 4.54; N, 6.50.
Acknowledgement
This investigation was supported by the Ministry of Science and
Technology of Slovenia (Grant No. 33-030 and CI-01513) and the
EU (BIOMED1, Agreement No. ERBCIPDCT 930194, PL 93-
1112). We thank dr. Bogdan Kralj at the Mass Spectrometry Centre
at Joûef Stefan Institute (Ljubljana) and dr. Janez Plavec at the
Slovenian National NMR Centre.
(14) The stereochemistry of the Dimroth reaction of glycosyl
azides with DOG is in sharp contrast to that observed with
cyanoacetamide, which was reported to yield 1,2-trans
nucleosides exclusively or predominately from either 1,2-
trans or 1,2-cis glycosyl azides: Tolman, R. L.; Smith, C. W.;
Robins, R. K. J. Am. Chem. Soc. 1972, 94, 2530; Smith, C. W.;
Sidwell, R. W.; Robins, R. K.; Tolman, R. L. J. Med. Chem.
1972, 15, 883; Chretien, F.; Gross, B. Tetrahedron 1982, 38,
103. This difference may be attributed to much more
favourable intramolecular triazene N-atom to carbonyl group
cyclization in the glycosyl azide-DOG adduct as opposed to
the cyclization to cyano group in the glycosyl azide-
cyanoacetamide adduct. For this reason, the competitive
anomerization process in the former case should be effectively
supressed.
(15) All new compounds were characterized by spectroscopic
(NMR, IR, and MS) and analytical methods (microanalysis
and/or HRMS) including an X-ray analysis of compound 2f.
Details will be provided in a full paper.
(16) Ammonia, saturated in methanol at 0 °C, was used.
(17) Matsuda, A.; Shinozaki, M.; Suzuki, M.; Watanabe, K.;
Miyasaka, T. Synthesis 1986, 385.
References and Notes
(1) Present address: Krka, Pharmaceutical and Chemical Works,
Šmarješka c. 6, 8501 Novo mesto, Slovenia.
(2) Revankar, G. R.; Robins, R. K. In Chemistry of Nucleosides
and Nucleotides; Townsend, L. B., Ed.; Plenum Press: New
York, Vol. 2, 1991, p 161.
(3) Franchetti, P.; Messini, L.; Cappellacci, L.; Grifantini, M.;
Nocentini, G.; Guarracino, P.; Marongiu, M. E.; La Colla P.
Antiviral Chem. Chemother. 1993, 4, 341.
(4) Seela, F.; Lampe, S. Helv. Chim. Acta 1991, 74, 1790.
(5) Hotoda, H.; Koizumi, M.; Koga, R.; Kaneko, M.; Momota, K.;
Ohmine, T.; Furukawa, H.; Agatsuma, T.; Nishigaki, T.; Sone,
J.; Tsutsumi, S.; Kosaka, T.; Abe, K.; Kimura, S.; Shimada, K.
J. Med. Chem. 1998, 41, 3655.
(6) Morales, J. C.; Kool, E. T. J. Am. Chem. Soc. 1999, 121, 2323.
(7) Meyer, R. B., Jr.; Revankar, G. R.; Cook, P. D.; Ehler, K. W.;
Schweizer, M. P.; Robins, R. K. J. Heterocycl. Chem. 1980,
17, 159.
(8) Earl, R. A.; Townsend, L. B. Can. J. Chem. 1980, 58, 2550.
(9) Štimac, A.; Townsend, L. B.; Kobe, J. Nucleosides,
Nucleotides 1991, 10, 727.
(18) Campagna, F.; Carotti, A.; Casini, G. Tetrahedron Lett. 1977,
1813.
(10) L'abbe, G. Ind. Chim. Belg. 1971, 36, 3.
(19) For the chemospecific ammonolysis of similar diesters, see for
the imidazole series: Robins, R. K.; Horner, J. K.; Greco, C.
V.; Noell, C. W.; Beames, C. G., Jr. J. Org. Chem. 1963, 28,
3041; the pyrazole series: Ehler, K. W.; Robins, R. K.; Meyer,
R. B., Jr. J. Med. Chem. 1977, 20, 317; the pyrrole series:
Schneller, S. W.; Hosmane, R. S.; MacCartney, L. B.;
Hessinger, D. A. J. Med. Chem. 1978, 21, 990. However, the
chemospecific ammonolysis of 1(3)-unsubstituted methyl
4(5)-methoxycarbonylmethyl-1,2,3-triazole-5(4)-carboxylate
could only be achieved with conc. NH4OH at 0 °C, see ref. 7.
(20) 8b: mp 245 °C (dec.), [a]D25 -117 (c 1.00, DMSO), {lit.8 mp
239-241 °C (dec.), [a]D25 -123.2}; 1H NMR(300 MHz,
DMSO-d6): d 3.42-3.62 (m, 2, H-5'a,5'b), 3.97 (ddd, 1, H-4'),
4.19 (ddd, 1, H-3'), 4.63 (ddd, 1, H-2'), 4.86 (t, 1, OH; J 5.4
Hz), 5.27 (d, 1, OH; J 5.2 Hz), 5.49 (s, 1, H-7), 5.55 (d, 1, OH;
J 5.9 Hz), 5.82 (d, 1, H-1'; J1’,2’5.1 Hz), 6.08 (br s, 2, NH2),
10.71 (br s, 1, NH). 13C NMR(75.4 MHz, DMSO-d6): d 62.34
(11) Preparation of glycosyl azides 1a, 1e, and 1f: Štimac, A.;
Kobe, J. Carbohydr. Res. 1992, 232, 359; 1b: Baddiley, J.;
Buchanan, J. G.; Hodges, R.; Prescott, J. F. J. Chem. Soc.
1957, 4769; 1c, by the isopropylidenation of 1b with Me2CO/
I2 according to: Kartha, K. P. R. Tetrahedron Lett. 1986, 27,
3415; 1h and 1k, by the azidotrimethylsilane-SnCl4 method as
reported for 1a above; 1n, by substitution of 3,5-di-O-(p-
toluoyl)-2-deoxy-a-D-erythropentofuranosyl chloride with
KN3 or CsN3 in DMSO at room temperature for 1 h; 1r, 1u,
and 1w, by the liquid-liquid phase transfer catalytic method
according to: Tropper, F. D.; Andersson, F. O.; Braun, S.;
Roy, R. Synthesis 1992, 618. Details of the preparation of
previously unknown substrates as well as those prepared by
more stereoselective routes will be given in separate
publications.
(12) Cottrell, I. F.; Hands, D.; Houghton, P. G.; Humphrey, G. R.;
Wright, S. H. B. J. Heterocycl. Chem. 1991, 28, 301.
Synlett 1999, No. 07, 1069–1073 ISSN 0936-5214 © Thieme Stuttgart · New York