of our knowledge, no examples of alkyl CÀH arylations
using aryl halides and substoichiometric amounts of first
row transition metals have been disclosed.1
the possible involvement of alkyl radicals in these reac-
tions. As would be expected, in this scenario the use of
radical scavengers such as TEMPO ((2,2,6,6-tetramethyl-
piperidin-1-yl)oxidanyl) and galvinoxyl led to lower yields
of 1b (entries 9 and 10).
Herein, we describe a method for the intramolecular
coupling of aryl halides (halide = Br, Cl) with alkyl CÀH
bonds adjacent to nitrogen in benzamide substrates using
substoichiometric Ni(COD)2. During the course of these
investigations we discovered that the same transformation
could often be effected using substoichiometric 1,10-
phenanthroline in place of Ni(COD)2. These latter results
are the first demonstration of the use of transition-metal-
free catalysts for the arylation of alkyl CÀH bonds adja-
cent to heteroatoms using aryl halides.8À11
Table 1. Optimization of the Intramolecular Arylation of 1-Bra
Our studies commenced with the investigation of reac-
tion parameters for the intramolecular arylation of amide
1-Br using the Ni(COD)2/PCy3 catalyst system (Table 1).
Although the use of carbonate and phosphate bases pro-
vided only trace cyclization product (entries 1À4), higher
conversion was obtained with NaOtBu in xylene or
dioxane (entries 5 and 6). Strikingly, in contrast to the
previously reported Pd-catalyzed reactions (which afford
1a),12 isoindolinone 1b was formed as the major product
via arylation of the cyclohexyl CÀH bond.
Control experiments revealed that the yield of 1b could
be improved to 45% in the absence of PCy3 (entry 7).
However, diminished product yields were obtained when
Ni(COD)2 was excluded (entry 8). The preferential aryla-
tion of the more substituted CÀH bond (cyclohexyl versus
methyl) using the Ni(COD)2/NaOtBu system suggested
a General conditions: Ni(COD)2 (0.1 equiv), PCy3HBF4 (0 or
0.2 equiv), base (1.5 equiv), solvent, 145 °C, 15 h. b Calibrated GC yields
against hexadecane as the internal standard. c Calibrated yield of
remaining 1-Br determined by gas chromatographic analysis of the
crude reaction mixtures. d General conditions, but with no Ni(COD)2.
e In the presence of TEMPO (0.5 equiv). f In the presence of galvinoxyl
(0.5 equiv).
(8) For recent examples on biaryl formation in the absence of
transition metal catalysts, see: (a) Buden, M. E.; Guastavino, J. F.;
Rossi, R. A. Org. Lett. 2013, 15, 1174. (b) Liu, W.; Tian, F.; Wang, X.;
Yu, H.; Bi, Y. Chem. Commun. 2013, 49, 2983. (c) Cheng, Y.; Gu, X.; Li,
P. Org. Lett. 2013, 15, 2664. (d) Mehta, V. P.; Punji, B. RSC Adv. 2013,
11957. (e) Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y.
Org. Lett. 2012, 14, 5306. (f) Bhakuni, B. S.; Kumar, A.; Balkrishna,
S. J.; Sheikh, J. A.; Konar, S.; Kumar, S. Org. Lett. 2012, 14, 2838. (g)
De, S.; Ghosh, S.; Bhunia, S.; Sheikh, J. A.; Bisai, A. Org. Lett. 2012, 14,
4466. (h) Shirakawa, E.; Itoh, K.-I.; Higashino, T.; Hayashi, T. J. Am.
Chem. Soc. 2010, 132, 15537. (i) Liu, W.; Cao, H.; Zhang, H.; Chung,
K. H.; He, C.; Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010,
132, 16737. (j) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu,
X.-Y.; Huang, K.; Zheng, S.-F.; Li, B.-J.; Shi, J.-Z. Nat. Chem. 2010, 2,
1044.
The potential involvement of radicals and the require-
ment for strong bases is reminiscent of the recently re-
ported 1,10-phenanthroline catalyzed arylation of sp2
CÀH bonds using aryl halides.8,9 As shown in Scheme 1,
1,10-phenanthrolinecouldbeusedinplaceofNi(COD)2 to
afford 1b in comparable yield (38%) albeit with higher
catalyst loadings (20 mol %). Although complete conver-
sion of 1-Br is observed using either Ni(COD)2 or 1,10-
phenanthroline, the modest yield of 1b is in part due to
significant demethylation of the protodebrominated sub-
strate (producing a 2° amide). The observation of this
product suggested that 1° CÀH bonds are not amenable to
the desired arylation.
(9) For recent reviews on biaryl formation in the absence of transition
metal catalysts, see: (a) Shirakawa, E.; Hayashi, T. Chem. Lett. 2012, 41,
130. (b) Yanagisawa, S.; Itami, K. ChemCatChem 2011, 3, 827. (c)
Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2011, 50, 5018. (d) Lei,
A.; Lei, W.; Liu, C.; Chen, M. Dalton Trans. 2010, 39, 10352.
(10) Metal-free intramolecular R-arylation adjacent to a carbonyl
using aryl halides has been reported. See: Khan, T. A.; Tripoli, R.;
Crawford, J. J.; Martin, C. G.; Murphy, J. A. Org. Lett. 2003, 5, 2971.
Arylations adjacent to heteroatoms using aryl halides in the presence of
radical initiators such as Bu3SnH/AIBN have been reported (see ref
11d).
Scheme 1. Arylation Using 1,10-Phenanthroline
(11) For other representative reports on sp3 CÀH arylation adjacent
€
to nitrogen atoms, see: (a) Dastbaravardeh, N.; Kirchner, K.; Schnurch,
M.; Mihovilovic, M. D. J. Org. Chem. 2013, 78, 658. (b) McNally, A.;
Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114. (c) Prokopkova,
H.;Bergman, S. D.;Aelvoet, K.;Smout, V.;Herrebout, W.;VanderVeken,
B.; Meerpoel, L.; Maes, B. U. W. Chem.;Eur. J. 2010, 16, 13063. (d)
Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. (e) Pastine, S. J.; Gribkov,
D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220. (f) Campos, K. R.;
Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C. Y. J. Am. Chem.
Soc. 2006, 128, 3538.
(12) (a) Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K.
J. Am. Chem. Soc. 2010, 132, 10692. (b) Rousseaux, S.; Davi, M.;
Sofack-Kreutzer, J.; Pierre, C.; Kefalidis, C. E.; Clot, E.; Fagnou, K.;
Baudoin, O. J. Am. Chem. Soc. 2010, 132, 10706.
Consistent with this proposal, the dimethyl substrate
2-Br provided the desired product only in trace amounts
under both sets of conditions (Table 2, entry 1). Gratify-
ingly, substrates bearing only 3° CÀH bonds adjacent to
nitrogen led to higher yields of products than those bearing
1° or 2° CÀH bonds (entries 1À4).13
B
Org. Lett., Vol. XX, No. XX, XXXX