LETTER
Total Synthesis of (±)-Phytochromobilin
903
(7) (a) Kinoshita, H.; Hayashi, Y.; Murata, Y.; Inomata, K. Chem.
Lett. 1993, 1437. (b) Kinoshita, K.; Ngwe, H.; Kohori, K.;
Inomata, K. Chem. Lett. 1993, 1441. (c) Kohori, K.;
Hashimoto, M.; Kinoshita, H.; Inomata, K. Bull. Chem. Soc.
Jpn. 1994, 67, 3088.
(8) Gossauer, A.; Blacha-Puller, M. Liebigs Ann. Chem. 1981,
1492. Structure of 14 was confirmed by 1H NMR spectrum.
(9) Gossauer, A.; Nydegger, F.; Benedikt, E.; Köst, H.-P. Helv.
Chim. Acta 1989, 72, 518.
15: mp 112.0-113.5 °C (from cyclohexane/hexane); IR (KBr)
3369, 3169, 2979, 1732, 1699, 1681, 1640, 1442, 1364, 1318,
1278, 1254, 1180, 1156, 1127, 1053, 989, 934, 772, 713 cm-1;
1H NMR (CDCl3) d = 1.39 (d, J = 7.32 Hz, 3H), 1.54 (s, 9H),
1.85 (d, J = 7.32 Hz, 3H), 1.98 (s, 3H), 2.54 (t, J = 8.17 Hz,
2H), 3.00 (t, J = 8.17 Hz, 2H), 3.24 (brq, J = 7.56 Hz, 1H),
4.59 (d, J = 5.85 Hz, 2H), 5.23 (dd, J = 1.22, 10.09 Hz, 1H),
5.30 (dd, J = 1.22, 17.20 Hz, 1H), 5.70 (s, 1H), 5.92 (ddt,
J = 10.09, 17.20, 5.85 Hz, 1H), 6.18 (dq, J = 2.20, 7.32 Hz,
1H), 8.58 (s, 1H), 9.05 (s, 1H) ppm; Found: C, 67.13; H, 7.61;
N, 6.36%. Calcd for C24H32N2O5: C, 67.27; H, 7.53; N, 6.54%.
(10) Falk, H. The Chemistry of Linear Oligopyrroles and Bile
Pigment; Springer: Wien-New York, 1989; p 36.
Scheme 5
a 15 (2.0 eq), TFA at rt, 20 min, then TFA was evaporated and MeOH
solution of 23 (1.0 eq) was added, cat. conc. H2SO4 at rt, 1 h; 3 80%.
b cat. Pd(PPh3)4, morpholine (4.0 eq) in THF at rt, 1 h; 1 not yet opti-
mized.16
(11) Kohori, K.; Kinoshita, H.; Inomata, K. Chem. Lett. 1995, 799.
(12) Olah, G. A.; Malhotra, R.; Narang, S. C. Synthesis 1979, 58.
Direct bromination of the sulfoxide 17 produced not only the
desired product, but also the reduced compound 19 in low
yield.
The allyl ester groups could be deprotected15 according to
the method described in the previous paper to obtain the
acid form of phytochromobilin (1).16 However, 1 was ex-
tremely unstable compared to phycocyanobilin (2) pre-
pared previously.3,4
(13) 23: mp 171.5-173.0 °C (from CHCl3/AcOEt); IR (KBr) 3330,
3166, 3016, 2920, 2860, 1726, 1704, 1661, 1594, 1543, 1507,
1450, 1415, 1387, 1340, 1258, 1169, 1094, 986, 927, 793, 712
cm-1; 1H NMR (CDCl3) d = 2.10 (s, 3H), 2.11 (s, 3H), 2.61 (t,
J = 7.61 Hz, 2H), 3.06 (t, J = 7.61 Hz, 2H), 4.58 (d, J = 7.87
Hz, 2H), 5.21 (dd, J = 1.33, 10.36 Hz, 1H), 5.29 (dd, J = 1.33,
17.06 Hz, 1H), 5.42 (dd, J = 1.74, 11.60 Hz, 1H), 5.90 (ddt,
J = 10.36, 17.06, 7.87 Hz, 1H), 5.93 (s, 1H), 6.16 (dd,
J = 1.74, 17.43 Hz, 1H), 6.47 (dd, J = 11.60, 17.43 Hz, 1H),
9.66 (s, 1H), 10.67 (s, 1H), 11.01 (s, 1H) ppm; Found: C,
67.41; H, 6.37; N, 7.63%. Calcd for C20H22O4N2: C, 67.78; H,
6.26; N, 7.90%; HRMS (EI): (M+), Found: m/z 354.1583.
Calcd for C20H22O4N2:354.1580.
(14) 3: mp 177.5-179.0 °C (decomp.) (from CHCl3/hexane); IR
(KBr) 3337, 3088, 3009, 2914, 1733, 1675, 1610, 1590, 1449,
1416, 1375, 1279, 1243, 1223, 1166, 1096, 1052, 981, 929,
803, 748, 697 cm-1; 1H NMR (CDCl3) d = 1.33 (d, J = 7.44 Hz,
3H), 1.88 (d, J = 7.32 Hz, 3H), 2.05 (s, 3H), 2.14 (s, 3H), 2.21
(s, 3H), 2.58 (t, J = 7.56 Hz, 4H), 2.91 (t, J = 7.56 Hz, 2H),
2.95 (t, J = 7.56 Hz, 2H), 3.11 (brq, J = 7.44 Hz, 1H), 4.58 (m,
4H), 5.22 (dm, J = ca.10.3 Hz, 2H), 5.28 (dm, J = 17.08 Hz,
1H), 5.29 (dm, J = 17.08 Hz, 1H), 5.40 (dd, J = 2.20, 11.53
Hz, 1H), 5.83 (s, 1H), 5.84-5.95 (m, 1H), 6.09 (s, 1H), 6.22
(dd, J = 2.20, 17.63 Hz, 1H), 6.39 (dq, J = 2.19, 7.32 Hz, 1H),
6.52 (dd, J = 11.53, 17.63 Hz, 1H), 6.65 (s, 1H), 7.26 (s,
ca.2H) ppm; UV/Vis (MeOH) lmax 372 (e = 50,000), 631
(e = 16,000) nm; HRMS (FAB): (M++1), Found: m/z
665.3328. Calcd for C39H45O6 N4:665.3339.
As described above, phytochromobilin (1) was success-
fully prepared starting from two pyrrole derivatives, 8 and
11, employing novel synthetic reactions, i.e., 1) rearrange-
ment of the tosyl group of 2-tosylpyrroles to the 5-posi-
tion under acidic conditions, 2) efficient transformation of
a-bromopyrroles to the corresponding pyrrolinones under
anhydrous acidic conditions, 3) Wittig-type coupling re-
action between 5-tosylpyrrolinones and 2-formylpyrrole,
followed by reductive transformation to the A/B-ring
component, 4) protection and deprotection of propanoic
acid side chains via allyl esters.
Investigation on the reconstituted chromoproteins using
synthesized racemic 1 and other phycobilins prepared so
far is in progress for the structure/function analysis of
phytochrome.
References and Notes
(1) Schmidt, P.; Westphal, U.; Worm, S.; Braslavsky, S. E.;
Gärtner, W.; Schaffner, K. J. Photochem. Photobiol. B :
Biology 1996, 34, 73 and references cited therein.
(2) (a) Gossauer, A.; Hinze, R.-P. J. Org. Chem. 1978, 43, 283.
(b) Weller, J.-P.; Gossauer, A. Chem. Ber. 1980, 113, 1603.
(3) (a) Masukawa, T.; Kato, H.; Kakiuchi, T.; Jayasundera, K. P.;
Kinoshita, H.; Inomata, K. Chem. Lett. 1998, 455.
(b) Kakiuchi, T.; Kato, H.; Jayasundera, K. P.; Higashi, T.;
Watabe, K.; Sawamoto, D.; Kinoshita, H.; Inomata, K. Chem.
Lett. 1998, 1001. (c) Jayasundera, K. P.; Kinoshita, H.;
Inomata, K. Chem. Lett. 1998, 1227.
(4) Lindner, I.; Knipp, B.; Braslavsky, S. E.; Gärtner, W.;
Schaffner, K. Angew. Chem., Int. Ed. Engl. 1998, 37, 1843.
(5) Hoogenboon, B. E.; Oldenziel, O. H.; van Leusen, A. M. Org.
Synth. 1988, Coll. Vol. VI, 987.
(6) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron
1990, 46, 7587.
(15) Kunz, H.; Unverzagt, C. Angew. Chem., Int. Ed. Engl. 1984,
23, 436.
(16) To a mixed solution of 3 (31 mg, 0.0467 mmol) and Pd(PPh3)4
(11 mg, 0.00952 mmol) in THF (5 ml) was added a 0.1 M THF
solution (1.87 ml) of morpholine (0.187 mmol) in the dark
under nitrogen atmosphere at room temperature. After stirring
for 1 h at room temperature, the solvent was evaporated. The
resulting residue was separated by a silica gel column
chromatography (CHCl3/MeOH/AcOH = 200/15/1). The last
green fraction was evaporated and dissolved again in CHCl3
containing 1% MeOH. After a repetition of the back-
extraction with 1/15 M phosphate buffer solution (pH 7.8;
Synlett 1999, S1, 901–904 ISSN 0936-5214 © Thieme Stuttgart · New York