LETTER
A Simple Method for the Construction of Fused Tri- and Tetracyclic Ethers
1039
Firstly, construction of tricyclic 4 from aldehyde 7a (race-
mic) and acyclic 8 was examined as the simplest model
system for convergent synthesis of polycyclic ethers
(Scheme 3). Deprotonation of 8 with LDA (1 equiv) in
THF at -78 °C followed by addition of aldehyde 7a (race-
mic, 0.67 equiv) provided 22 in good yield (78% based on
7a) as a mixture of diastereomers together with the recov-
ered 7a (22%) and 8 (45%). After desilylation and treat-
ment with p-toluenesulfonic acid in MeOH-(MeO)3CH
(9:1) system,15 22 produced the desired bicyclic com-
pounds 23 (94%) as an inseparable mixture of epimers at
C7 (a-OH:b-OH = 1:3). The acetal 23 was reduced with
Et3SiH in the presence of SnCl416 to give an isomeric mix-
ture of bicyclic ethers which afforded the desired ketone
24 (65%) and its C8-epimer 25 (24%) after oxidation.
When 25 was treated with DBU in benzene-d6 at ambient
temperature, the reaction attained equilibrium
(24:25 = 7:1) to give 24 (72%) mainly. The benzyl group
of 24 was removed by hydrogenolysis to provide cyclic
hemiacetal 26 (~100%) as an anomeric mixture. While
TMSOTf-catalyzed reduction of 26 with Et3SiH16 at 0 °C
gave a 1:1 mixture of the desired 43i,17 and its epimer
27,3i,17 the ratio of 4 to 27 was improved by lowering the
reaction temperature (-78 Æ -15 °C, 4:27 = 4:1). Thus, 4
was synthesized from 7a in 8 steps, including an isomer-
ization step. The overall yield of 4 amounted to 44% from
7a.
Acknowledgment
This work was supported by Grant-in-Aid from the Ministry of
Education, Science, Sports and Culture, Japan (No. 10308027,
A.M.). We thank Amano Pharmaceutical Co., Ltd., for a generous
gift of lipase.
References and Notes
(1) (a) Lin, Y.-Y.; Risk, M.; Ray, S. M.; Van Engen, D.; Clardy,
J.; Golik, J.; James, J. C.; Nakanishi, K. J. Am. Chem. Soc.
1981, 103, 6773. (b) Shimizu, Y.; Bando, H.; Chow, H.-N.;
Van Duyne, G.; Clardy, J. C. J. Chem. Soc., Chem. Commun.
1986, 1656. (c) Shimizu, Y.; Chow, H.-N.; Bando, H.; Van
Duyne, G.; Clardy, J. C. J. Am. Chem. Soc. 1986, 108, 514. (d)
Pawlak, J.; Tempesta, M. S.; Golik, J.; Zagorski, M. G.; Lee,
M. S.; Nakanishi, K.; Iwashita, T.; Gross, M. L.; Tomer, K. B.
J. Am. Chem. Soc. 1987, 109, 1144.
(2) (a) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Yasumoto, T.
J. Am. Chem. Soc. 1989, 111, 8929. (b) Murata, M.; Legrand,
A. M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem.
Soc. 1990, 112, 4380. (c) Suzuki, T.; Sato, O.; Hirama, M.;
Yamamoto, Y.; Murata, M.; Yasumoto, T.; Harada, N.
Tetrahedron Lett. 1991, 32, 4505. (d) Satake, M.; Morohashi,
A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto,
T. J. Am. Chem. Soc. 1997, 119, 11325.
(3) (a) Nicolaou, K. C.; Hwang, C.-K.; Nugiel, D. A. J. Am.
Chem. Soc. 1989, 111, 4136. (b) Nicolaou, K. C.; Prasad, C.
V. C.; Hwang, C.-K.; Duggan, M. E.; Veale, C. A. J. Am.
Chem. Soc. 1989, 111, 5321. (c) Nicolaou, K. C.; Hwang, C.-
K.; Marron, B. E.; DeFrees, S. A.; Couladouros, E. A.; Abe,
Y.; Carrol, P. J.; Snyder, J. P. J. Am. Chem. Soc. 1990, 112,
3040. (d) Nicolaou, K. C.; Postema, M. H. D.; Claiborne, C.
F. J. Am. Chem. Soc. 1996, 118, 1565. (e) Nicolaou, K. C.
Angew. Chem. Int. Ed. Engl. 1996, 35, 589. (f) Nicolaou, K.
C.; Sorensen, E. J. Classics in Total Synthesis; VCH,
Weinheim, 1996, Chap. 37, pp. 731-786. (g) Nicolaou, K. C.;
Yang, Z.; Shi, G.-q.; Gunzner, J. L.; Agrios, K. A.; Gärtner, P.
Nature 1998, 392, 264. (h) Alvarez. E.; Díaz, M. T.; Hanxing,
L.; Martín, J. D. J. Am. Chem. Soc. 1995, 117, 1437. (i)
Alvarez. E.; Pérez, R.; Rico, M.; Rodríguez, R. M.; Martín, J.
D. J. Org. Chem. 1996, 61, 3003. (j) Inoue, M.; Sasaki, M.;
Tachibana, K. Tetrahedron Lett. 1997, 38, 1611. (k) Inoue,
M.; Sasaki, M.; Tachibana, K. Angew. Chem. Int. Ed. Engl.
1998, 37, 965. (l) Sasaki, M.; Inoue, M.; Noguchi, T.;
Takeichi, A.; Tachibana, K. Tetrahedron Lett. 1998, 39, 2783.
(m) Sasaki, M.; Fuwa, H.; Inoue, M.; Tachibana, K.
Tetrahedron Lett. 1998, 39, 9027. (n) Sasaki, M.; Noguchi, T.;
Tachibana, K. Tetrahedron Lett. 1999, 40, 1337. (o) Oishi, T.;
Nagumo, Y.; Hirama M. Synlett 1997, 980. (p) Oishi, T.;
Nagumo, Y.; Hirama M. J. Chem. Soc., Chem. Commun.
1998, 1041.
Next, tetracyclic 5 and 6, as the advanced model systems,
were synthesized (Scheme 4). Both 6-membered (7a+9a)
and 7-membered cyclic series (7b+9b) gave the respec-
tive diols 29a and 29b in good yields through the segment
connection and the desilylating steps. Acidic treatment of
each diol in MeOH-(MeO)3CH15 produced separable a-
hydroxy acetals 30 and its b-isomers 31. Under reductive
etherification conditions, both 31a and 31b showed exclu-
sive production of 34a and 34b, respectively. On the other
hand, both 30 afforded mixtures of 32 and 33, and the dis-
tribution of the isomers altered with the size of the respec-
tive outside rings (32a:33a = 3:1, 32b:33b = 8:1). Swern
oxidation7 of both 32 and 34 led to the common ketones
35, respectively. The alcohol 33a was also converted to
35a in good yield via an oxidation-isomerization se-
quence. After debenzylation followed by reductive ether-
ification, ketones 35a and 35b produced tetracyclic ether
53c, 17 and 617 in good yields (overall yields, 5:34% from
7a in 8 steps, 6:29% from 7b in 7 steps), respectively, via
cyclic hemiacetals 36a and 36b.
(4) (a) Ogura, K.; Tsuchihashi, G. Tetrahedron Lett. 1972, 2681.
(b) Herrmann, J. L.; Richman, J. E.; Wepplo, P. J.;
Schlessinger, R. H. Tetrahedron Lett. 1973, 4707.
trans-Fused tri- and tetracyclic ethers 4, 5, and 6 were thus
synthesized in high yields in short steps involving acetal
cyclization and reductive etherification reactions starting
from monocyclic ethereal aldehyde 7 and dithioacetal S-
oxide segments 8 and 9. This sequence could provide a
simple convergent approach to the synthesis of various
condensed polycyclic ethers. Application of the present
work to the synthesis of natural polycyclic ethers is cur-
rently underway in our laboratory.
(5) Sulfoxide 8 was prepared from 2-phenyl-1,3-dioxane in 3
steps [(i) LiAlH4, AlCl3; (ii) PPh3, I2, imidazole; (iii) methyl
methylthiomethyl sulfoxide, BuLi].
(6) Simart, F.; Brunel, Y.; Robin, S.; Rousseau, G. Tetrahedron
1998, 54, 13557.
(7) (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651. (b)
Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978,
43, 2480. (c) Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
(d) Tidwell; T. T. Org. React. 1990, 39, 297.
(8) The optical purity of (+)- and (-)-10 was determined by HPLC
analysis of the corresponding 3,5-dinitrobenzoates using
chiral column (CHRALCEL OD, Daicel Chemical Ind., Ltd.).
Synlett 1999, No. 07, 1037–1040 ISSN 0936-5214 © Thieme Stuttgart · New York