Photophysical Processes in Polydentate Ln Complexes
J. Phys. Chem. A, Vol. 104, No. 23, 2000 5467
(17) Heller, A. J. Am. Chem. Soc. 1967, 89, 167.
containing the transient absorbance data were subjected to
principal component analysis by means of singular value
decomposition. All the datasets contained only one significant
component. This component was used in the reconstruction of
the transient absorption spectrum of this single component in
the top of the excitation pulse and its kinetics.
Electrochemical Measurements. Cyclic voltammetry was
performed in a three-electrode cell containing a platinum
working electrode, a platinum counter electrode, and a Ag/AgCl
reference electrode, with an Autolab PGSTAT10 (ECO-
CHEMIE, Utrecht, The Netherlands). The ferrocene/ferricinium
redox couple was used as an internal standard (E° ) 0.44 V vs
SCE in DMSO).54 The solvent DMSO was of spectroscopic
grade and was deoxygenated by being purged with nitrogen.
The ground electrolyte was Bu4NPF6 (0.1 M). The measure-
ments were performed in a glovebox under a nitrogen atmo-
sphere. The cyclic voltammograms were recorded at a scan rate
of 100 mV/s.
(18) Iwamuro, M.; Hasegawa, Y.; Wada, Y.; Murakoshi, K.; Kitamura,
T.; Nakashima, N.; Yamanaka, T.; Yanagida, S. Chem. Lett. 1997, 1067.
(19) Desurvire, E. Phys. Today 1994, 97, 20.
(20) Oshishi, Y.; Kanamori, T.; Kitagawa, T.; Takashashi, S.; Snitzer,
E.; Sigel Jr., G. H. Opt. Lett. 1991, 16, 1747.
(21) An, D.; Yue, Z.; Chen, R. T. Appl. Phys. Lett. 1998, 72, 2806.
(22) Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E.
B.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 9408.
(23) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochem-
istry, 2nd ed.; Marcel Dekker Inc.: New York, 1993.
(24) Klink, S. I.; Hebbink, G. A.; Grave, L.; Peters, F. G. A.; Van
Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. Eur. J. Org. Chem.,
in press.
(25) Klink,S. I.; Hebbink, G. A.; Grave, L.; van Veggel, F. C. J. M.;
Reinhoudt, D. N.; Slooff, L. H.; Polman, A.; Hofstraat, J. W. J. Appl. Phys.
1999, 86, 1181.
(26) Jorgenson, W. L.; Briggs, J. M. Mol. Phys. 1988, 63, 547.
(27) van Veggel, F. J. C. M.; Reinhoudt, D. N. Recl. TraV. Chim. Pays-
Bas 1995, 114, 387. The Lennard-Jones parameters for the Ln3+ ions were
taken from: van Veggel, F. C. J. M.; Reinhoudt, D. N. Chem. Eur. J. 1999,
5, 90.
(28) (a) Kirby, A. F.; Foster, D.; Richardson, F. S. Chem. Phys. Lett.
1983, 95, 507. (b) Kirby, A. F. Richardson, F. S. J. Phys. Chem. 1983, 87,
2544.
Acknowledgment. Akzo Nobel Research is gratefully
acknowledged for its financial and technical support. Frank
Steemers (University of Twente) is gratefully acknowledged for
his contribution to the synthesis of the triphenylene antenna.
Lenneke Slooff and Professor Albert Polman (FOM Institute
for Atomic and Molecular Physics, The Netherlands) are
gratefully acknowledged for their support with the near-infrared
luminescence measurements. We express gratitude to Professor
Jan Verhoeven (University of Amsterdam) for his valuable
comments. This research has been financially supported by the
Council for Chemical Sciences of The Netherlands Organization
for Scientific Research (CW-NWO).
(29) 1H NMR spectra of similar complexes in DMSO-d6 show that these
types of complexes have a (time-averaged) Cs symmetry. See also ref 24.
(30) Richardson, F. S. Chem. ReV. 1982, 82, 541.
(31) (a) Kropp, J. L.; Windsor, M. W. J. Chem. Phys. 1963, 39, 2769.
(b) Kropp, J. L.; Windsor, M. W. J. Chem. Phys. 1965, 42, 1599. (c) Kropp,
J. L.; Windsor, M. W. J. Chem. Phys. 1966, 45, 761.
(32) (a) Horrocks, W. D., Jr.; Sudnick, D. R. Acc. Chem. Res. 1981,
14, 384. (b) Holz, R. C.; Chang, C. A.; Horrocks, W. D., Jr. Inorg. Chem.
1991, 30, 3270.
(33) Beeby, A.; Clarkson, J. M.; Dickins, R. S.; Faulkner, S.; Parker,
D.; Royle, L.; de Sousa, A. S.; Williams, J. A. G.; Woods, M. J. Chem.
Soc., Perkin Trans. 2 1999, 493.
(34) Frey, S. T.; Horrocks,W. D., Jr. Inorg. Chim. Acta 1995, 229, 383
and references therein.
(35) (a) Hasegawa, Y.; Kimura, Y.; Murakoshi, K.; Wada, Y.; Kim,
J.-H.; Nakashima, N.; Yamanaka, T.; Yanagida, S. J. Phys. Chem. 1996,
100, 10201. (b) Hasegawa, Y.; Murakoshi, K.; Wada, Y.; Yanagida, S.;
Kim, J.-H.; Nakashima, N.; Yamanaka, T. Chem. Phys. Lett. 1996, 248, 8.
(36) (a) Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. J.
Chem. Phys. 1989, 90, 3443. (b) Beeby, A.; Dickins, R.; Faulkner, S.; Parker,
D.; Williams, J. A. G. J. Chem. Soc., Chem. Commun. 1997, 1401.
(37) Steemers, F. J.; Verboom, W.; Hofstraat, J. W.; Geurts, F. A. J.;
Reinhoudt, D. N. Tetrahedron Lett. 1998, 39, 7583.
References and Notes
(1) Mukkala, V.-M.; Helenius, M.; Hemmila¨, I.; Kankare, J.; Takalo,
H. HelV. Chim. Acta 1993, 76, 1361.
(2) Slooff, L. H.; Polman, A.; Oude Wolbers, M. P.; van Veggel, F.
C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. J. Appl. Phys. 1997, 83, 497.
(3) Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Peters, F. G. A.;
van Beelen, E. S. E.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N.
Chem. Eur. J. 1998, 4, 772.
(4) (a) Gschneider, K. A.; Eyring, L. R. Handbook on the Physics and
Chemistry of Rare Earths; North-Holland Publishing Co.: Amsterdam, 1979.
(b) Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord. Chem. ReV. 1993, 123,
201 and references therein.
(5) Sato, S.; Wada, M. Bull. Chem. Soc. Jpn. 1970, 43, 1955.
(6) Crosby, G. A.; Whan, R. E.; Alire, R. M. J. Chem. Phys. 1961, 34,
743.
(7) Tanaka, M.; Yamagughi, G.; Shiokawa, J.; Yamanaka, C. Bull.
Chem. Soc. Jpn. 1970, 43, 549.
(8) Haynes, A. V.; Drickamer, H. G. J. Chem. Phys. 1982, 76, 114.
(9) (a) Tobita, S.; Arakawa, M.; Tanaka, I. J. Phys. Chem. 1984, 88,
2697. (b) Tobita, S.; Arakawa, M.; Tanaka, I. J. Phys. Chem. 1985, 89,
5649.
(38) Crosby, G. A.; Kasha, M. Spectrochim. Acta 1958, 10, 377.
(39) Stein, G.; Wu¨rzberg, E. J. Chem. Phys. 1975, 62, 208.
(40) Weber, M. J. Phys. ReV. 1968, 171, 283.
(41) (a) Sabbatini, N.; Perathoner, S.; Lattanzi, G.; Dellonte, S.; Balzani,
V. J. Phys. Chem. 1987, 91, 6136. (b) Steemers, F. J.; Meuris, H. G.;
Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1997, 62, 4229.
(42) The reduction potential of Eu3+ is -0.35 V in water (vs NHE).
Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution;
Marcel Dekker Inc.: New York, 1985.
(43) kdiff is taken as 1010 s-1; [O2] in methanol is 2.1 mM (ref 23). Since
kox ) kdiff[O2] ) 2 × 107 s-1, and there is no oxygen effect, kET > kox,
which means that kET exceeds 107 s-1
.
(44) Bhaumik, M. L.; El-Sayed. J. Chem. Phys. 1965, 42, 787.
(45) Bhattacharyya, S.; Sousa, L. R.; Ghosh, S. Chem. Phys. Lett. 1998,
(10) Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
297, 154.
(11) Sabbatini, N.; Guardigli, M.; Manet, I.; Ungaro, R.; Casnati, A.;
Ziessel, R.; Ulrich, G.; Asfari, Z.; Lehn, J.-M. Pure Appl. Chem. 1995, 67,
135.
(46) φse ) φiscφetφlum ) φiscφetτ/τ0. Typical values of the natural lifetime
τ0 of Eu3+ and Tb3+ are 3 and 4 ms, respectively. If φisc and φet are taken
as 1, then based on the luminescence lifetimes φse is 0.29 for (Eu)1 and
0.44 for (Tb)1.
(12) Parker, D.; Williams, J. A. G. J. Chem. Soc., Dalton Trans. 1996,
3613, and references therein.
(47) It can be demonstrated that a photon-induced electron-transfer
process may indeed be the additional cause of the low luminescence quantum
yield of (Eu)1. The antenna fluoresence lifetime of (Tb)1 was measured to
(13) (a) Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Snellink-Rue¨l,
B. H. M.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N. J. Am. Chem.
Soc. 1997, 119, 138. (b) Oude Wolbers, M. P.; van Veggel, F. C. J. M.;
Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N. J. Chem. Soc., Perkin
Trans. 2 1997, 2275. (c) Oude Wolbers, M. P.; van Veggel, F. C. J. M.;
Snellink-Rue¨l, B. H. M.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D.
N. J. Chem. Soc., Perkin Trans. 2 1998, 2141.
(14) Rudkevich, D. M.; Verboom, W.; van der Tol, E. B.; van Staveren,
C.; Kaspersen, F.; Verhoeven, J. W.; Reinhoudt, D. N. J. Chem. Soc., Perkin
Trans. 2 1995, 131.
be approximately 1 ns. Using the equation φflu ) kflu/(kflu + kisc) ) kfluτflu
,
it follows that kflu ) 0.86 × 107 s-1 and kisc ) 9.9 × 108 s-1. It can
furthermore be calculated that φisc . 0.99. If it is assumed that kflu and kisc
are the same for (Eu)1 as for (Tb)1, then the rate of the photon-induced
electron transfer (kPET) can be calculated via φflu ) kflu/(kflu + kisc + kPET),
resulting in kPET ) 5.9 × 108 s-1. As a result, the intersystem crossing
yield of (Eu)1 is lower than that of (Tb)1 with φisc ≈ 0.63.
(48) Van der Tol, E. B. Design and Photophysics of Luminescent Labels
for Use in Time-ResolVed Biological Assays. Ph.D. Thesis, University of
Amsterdam, 1998.
(15) Hemmila¨, I. K. Applications of Fluorescence in Immunoassays;
Wiley and Sons: New York, 1991.
(16) Werts, M. H. V.; Hofstraat, J. W.; Geurts, F. A. J.; Verhoeven, J.
W. Chem. Phys. Lett. 1997, 276, 196.
(49) Horrocks, W. D., Jr.; Bolender, J. P.; Smith, W. D.; Supkowski,
R. M. J. Am. Chem. Soc. 1997, 119, 5972 and references therein.