J \ 7.5, BArH), 7.58 (1H, t, J \ 7.5, BArH), 7.59 (1H, s, COCH), 7.64È
7.66 (4H, m, ArH), 8.03 (1H, d, J \ 7.9, BArH), 8.16 (1H, d, J \ 7.9,
BArH).
” UV/VIS (acetonitrile) j /nm (log e): 1: 292 (4.09), 494 (4.72); 2:
'
264 (4.08), 434 (4.27), 500 sh (4.12); 3: 285 (4.19), 484 (4.68); 4: 262
(4.22), 328 (3.69), 408 (4.45).
° Solvatochromism in the longest wavelength absorption bands of 1
and 4 (nm): cyclohexane (464, 386), Et O (478, 390), CCl (468, 394),
2
4
PriOH (481, 416), EtOH (486, 418), AcOEt (486, 402), THF (490, 405),
MeOH (487, 419), CH CN (494, 408), CHCl (486, 414), CH Cl (492,
3
3
2 2
414).
Ò Solvatochromism of the Ñuorescence of 1 and 4 (nm): CCl (512,
4
449), CHCl (546, 505), Et O (533, 465), AcOEt (552, 493), THF (559,
3
2
485), CH Cl (559, 520), PriOH (559, 542), EtOH (562, 545), CH CN
Fig. 3 Bond distances changed by the intramolecular coordinate
bond and contributing charge transfer electronic structure of 1: elon-
gated bond distances denoted by a plus and shortened bond distances
denoted by a minus, compared with 4.
2
2
3
(576, 530), MeOH (563, 546).
p Data were collected at 153 K on a Rigaku AFC7R di†ractometer
with graphite-monochromated Mo-Ka radiation (j \ 0.71069 A) and
a rotating anode generator. The structure was solved by direct
methods. The non-hydrogen atoms were reÐned anisotropically.
group, seems to be responsible for the coplanarity. Thus, as
shown in Fig. 1, the shortened distance between the boron
and oxygen atoms [1.608(2) A] clearly exhibits the formation
of the intramolecular coordinate bond. The di†erence between
the corresponding bond distances of 1 and 4, shown in Fig. 3,
is indicative of the contribution from the canonical structure
with the charge transfer electronic structure. In particular, the
increased double bond character of the bonds between C7 and
C8, and C9 and C10 is deduced from the respective shortened
bond distances.
Crystal data for 1: C
H
BNO É 1.5 H , M \ 436.42, red, prismatic
21 26
6 6
crystal (0.20 ] 0.40 ] 0.80 mm), triclinic, P1 (°2), a \ 9.622(4),
b \ 15.155(5),
c \ 9.522(3)
A,
a \ 101.21(3),
b \ 95.90(4),
c \ 108.32(3)¡, U \ 1272.9(9) A
3, Z \ 2, D \ 1.139 g cm~3, k \ 0.67
c
cm~1, F(000) \ 470. The Ðnal cycle of full-matrix least-squares reÐne-
ment was based on 3338 observed reÑections [I [ 3.00 r(I)] and 438
variable parameters and converged with unweighted and weighted
agreement factors of R \ 0.040 and R \ 0.046. Crystal data for 4:
w
C
H
NO, M \ 251.33, yellow, prismatic crystal (0.20 ] 0.40 ] 0.60
17 17
mm), monoclinic, P2 /a (°14), a \ 9.491(4), b \ 11.884(3),
1
c \ 12.912(3) A, b \ 108.35(2)¡, U \ 1382.3(7) A
3, Z \ 4, D \ 1.208 g
c
cm~3, k \ 0.75 cm~1, F(000) \ 536. The Ðnal cycle of full-matrix
least-squares reÐnement was based on 1347 observed reÑections
[I [ 3.00 r(I)] and 241 variable parameters and converged with
This work was supported by The Research Fund Grant-in-
Aid for Exploratory Research (No. 09874134) and that for
ScientiÐc Research on Priority Area (A) (No. 10146235) from
the Ministry of Education, Science, Sports and Culture, Japan.
unweighted and weighted agreement factors of R \ 0.051 and R \
w
suppdata/nj/1999/683/ for crystallographic Ðles in .cif format.
Notes and references
¤ All the compounds were identiÐed spectroscopically and by means
1 (a) Y. Sugihara, R. Hashimoto, H. Fujita, N. Abe, H. Yamamoto, T.
Sugimura and I. Murata, J. Chem. Soc., Perkin T rans. 1, 1995, 22,
2813; (b) Y. Sugihara, T. Murafuji, N. Abe, M. Takeda and A.
Kakehi, New J. Chem., 1998, 22, 1031.
2 For the stabilization of chlorobismuthanes by the hypervalent
bond, see: (a) H. Suzuki, T. Murafuji and N. Azuma, J. Chem. Soc.,
Perkin T rans. 1, 1993, 1169; (b) T. Murafuji, T. Mutoh, K. Satoh, K.
Tsunenari, N. Azuma and H. Suzuki, Organometallics, 1995, 14,
3848.
3 For the Ñuorescence of 4, see: (a) Y.-B. Jiang and X.-J. Wang, J.
Photochem. Photobiol. A: Chem., 1994, 81, 205; (b) P. Wang and S.
Wu, ibid., 1995, 86, 109.
4 M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, J.
Org. Chem., 1983, 48, 2877.
5 (a) E. Lippert, Z. Naturforsch. A, 1955, 10, 541; (b) N. Mataga, Y.
Kaifu and M. Koizumi, Bull. Chem. Soc. Jpn., 1955, 28, 690; ibid.,
1956, 29, 465.
6 L. Onsager, J. Am. Chem. Soc., 1936, 58, 1486.
7 C. A. van Walree, H. Kooijman, A. L. Spek, J. W. Zwikker and
L. W. Jenneskens, J. Chem. Soc., Chem. Commun., 1995, 35.
of high resolution mass spectrometry. NMR (CDCl ) 1: 1H d 0.65È
3
0.69 (10H, m, Et B), 3.11 (6H, s, Me N), 6.72 (2H, d, J \ 9.2,
2
2
AB
Me NArH), 7.30 (1H, t, J \ 7.9, BArH), 7.39 (1H, d, J \ 15.3,
2
AB
CH2CHCO), 7.51 (1H, t, J \ 7.9, BArH), 7.66 (2H, d, J \ 9.2,
AB
Me NArH), 7.68 (1H, d, J \ 7.3, BArH), 8.00 (1H, d, J \ 7.9, BArH),
2
8.28 (1H, d, J \ 15.3, CH2CHCO); 13C d 10.0, 14.8, 40.1, 108.6,
AB
119.9, 122.2, 125.1, 125.7, 128.9, 131.9, 132.4, 132.8, 137.9, 150.5, 153.3,
192.5; 11B d 14.8. 2: 1H d 3.10 (6H, s, Me N), 4.34 (4H, s, CH CH ),
2
2
2
6.71 (2H, d,
J
\ 9.2, Me NArH), 7.33 (1H, d,
J
\ 15.3,
AB
2
AB
CH2CHCO), 7.44 (1H, t, J \ 7.3, BArH), 7.58 (1H, t, J \ 7.3, BArH),
7.62 (2H, d, J \ 9.2, Me NArH), 7.70 (1H, d, J \ 7.3, BArH), 7.93
AB
2
(1H, d, J \ 7.9, BArH), 8.18 (1H, d, J \ 15.3, CH2CHCO). 3: 1H d
AB
2.22 (3H, s, Me), 3.10 (6H, s, Me N), 6.70 (2H, d, J \ 8.5,
2
AB
Me NArH), 7.30 (2H, d, J \ 7.9, MeArH), 7.51 (1H, d, J \ 15.3,
2
AB
AB
CH2CHCO), 7.61 (2H, d, J \ 8.5, Me NArH), 7.62 (1H, t, J \ 7.3,
AB
2
BiArH), 7.94 (1H, t, J \ 7.3, BiArH), 8.06 (2H, d, J \ 7.9, MeArH),
AB
8.08 (1H, d, J \ 15.3, CH2CHCO), 8.41 (1H, d, J \ 7.3, BiArH),
AB
9.11 (1H, d, J \ 7.3, BiArH). 5: 1H d 0.49È0.55 (20H, m, Et B), 3.07
2
(6H, s, Me N), 5.31 (2H, s, CH ), 6.70 (2H, d, J \ 8.6, Me NArH),
2
2
AB
2
7.31 (1H, t, J \ 7.5, BArH), 7.35 (1H, t, J \ 7.0, BArH), 7.51 (1H, t,
L etter 9/02282A
New J. Chem., 1999, 23, 683È685
685