J . Org. Chem. 1999, 64, 5241-5244
5241
Syn th esis a n d Eva lu a tion of Du oca r m ycin a n d CC-1065 An a logu es
Con ta in in g Mod ifica tion s in th e Su bu n it Lin k in g Am id e
Dale L. Boger,* Alejandro Santilla´n, J r., Mark Searcey, and Qing J in
Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute,
10550 North Torrey Pines Road, La J olla, California 92037
Received March 12, 1999
The preparation and evaluation of 6 and 7, analogues of the duocarmycins and CC-1065 in which
the subunit linking amide has been replaced with an amidine and thioamide, are described.
Consistent with the increased electron-withdrawing properties and conjugation of thioamides
relative to amides, 7 showed increased solvolysis reactivity (t1/2, 160 h versus 230 h) at pH 3,
attributable to a diminished vinylogous amide stabilization of the reacting alkylation subunit.
Amidine 6 proved to be even more unstable (t1/2, 12 h) despite the diminished electron-withdrawing
properties, but underwent preferential N2 amidine linkage hydrolysis rather than solvolysis of the
alkylation subunit, attributable to preferential N2 vinylogous amide versus amidine conjugation.
The natural isomers (+)-6 and (+)-7 exhibited an identical DNA alkylation selectivity as (+)-CBI-
TMI and (+)-duocarmycin SA but were less efficient (10-100×). Biological studies of (+)-6 and
(+)-7 (0.75 and 1.1 nM, respectively) indicated the analogues retained good cytotoxic activities
(L1210), but were less potent than (+)-duocarmycin SA (0.01 nM, 100×) and (+)-CBI-TMI (0.02
nM, 50×). The enhanced properties of the linking amide versus amidine or thioamide established
the N2 amide as the optimal linking unit examined to date and revealed that it provides a beautiful
balance between competing amide (reactivity) and vinylogous amide (stability) conjugation.
The duocarmycins and CC-1065 (1-3) are the parent
members of an exceptionally potent class of antitumor
antibiotics which derive their biological activity through
the sequence selective alkylation of duplex DNA.1-6 A key
feature shared by 1-3 is the amide linking the DNA
binding and alkylation subunits. The important contribu-
tion of the N2 atom to the unusual stability of the
alkylation subunit via vinylogous amide conjugation has
been described, and studies have revealed an apparent
appropriate balance of reactivity versus stability with the
presence of the linking N2 amide.7-9 Replacement of the
linking amide with a methylene in CBI-TMI (4) provided
an analogue 5 possessing a fully engaged vinylogous
amide which exhibited extraordinary stability (t1/2 ) 3.5
years, pH 3), a loss of virtually all biological activity, and
the inability to alkylate DNA even under extreme reac-
tion conditions (37 °C, 0.1 M, 2 weeks).10 Alternatively,
removal of the nitrogen atom provided an exceptionally
reactive carbocycle alkylation subunit (t1/2 ) 4.0 h, pH
7).8 These studies establish the N2 site as the source of
stabilization and that disruption of the vinylogous amide
conjugation via a binding-induced conformational change
within minor groove AT-rich sites of DNA activates the
agents for nucleophilic attack (DNA alkylation cataly-
sis).11 To further probe the critical role of the N2 amide,
herein we report the synthesis and evaluation of the CBI-
(1) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J . Chem.
Rev. 1997, 97, 787. Boger, D. L.; J ohnson, D. S. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1439. Boger, D. L.; J ohnson, D. S. Proc. Natl. Acad.
Sci. U.S.A. 1995, 92, 3642. Boger, D. L. Acc. Chem. Res. 1995, 28, 20.
Boger, D. L. Chemtracts: Org. Chem. 1991, 4, 329. Boger, D. L. Proceed.
Robert A. Welch Found. Conf. Chem. Res., XXXV. Chem. Front. Med.
1991, 35, 137. Boger, D. L. In Advances in Heterocyclic Natural
Products Synthesis; Pearson, W. H., Ed.; J AI: Greenwich, CT, 1992;
Vol. 2, p 1. Boger, D. L.; Coleman, R. S. In Studies in Natural Products
Chemistry; u-Rahman, A., Ed.; Elsevier: Amsterdam, 1989; Vol. 3, p
301.
(2) Warpehoski, M. A.; Hurley, L. H. Chem. Res. Toxicol. 1988, 1,
315. Hurley, L. H.; Needham-VanDevanter, D. R. Acc. Chem. Res. 1986,
19, 230. Warpehoski, M. A. In Advances in DNA Sequence Specific
Agents; Hurley, L. H., Ed.; J AI: Greenwich, CT, 1992; Vol. 1, p 217.
Hurley, L. H.; Draves, P. H. In Molecular Aspects of Anticancer Drug-
DNA Interactions; Neidle, S., Waring, M., Eds.; CRC: Ann Arbor, 1993;
Vol. 1, p 89. Aristoff, P. A. In Advances in Medicinal Chemistry;
Maryanoff, B. E., Maryanoff, C. E., Eds; J AI: Greenwich, CT, 1993;
Vol. 2, p 67. Warpehoski, M. A.; McGovren, P.; Mitchell, M. A. In
Molecular Basis of Specificity in Nucleic Acid-Drug Interactions;
Pullman, B., J ortner, J ., Eds.; Kluwer: Dordrecht, The Netherlands,
1990; 531.
(3) Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Kitos, P. A.; Sun-
tornwat, O. J . Org. Chem. 1990, 55, 4499. Boger, D. L.; Ishizaki, T.;
Zarrinmayeh, H.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. J . Am.
Chem. Soc. 1990, 112, 8961. Boger, D. L.; Munk, S. A.; Zarrinmayeh,
H.; Ishizaki, T.; Haught, J .; Bina, M. Tetrahedron 1991, 47, 2661.
Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H. J . Am. Chem. Soc. 1991,
113, 6645. Boger, D. L.; Yun, W.; Terashima, S.; Fukuda, Y.; Nakatani,
K.; Kitos, P. A.; J in, Q. Bioorg. Med. Chem. Lett. 1992, 2, 759. Boger,
D. L.; Yun, W. J . Am. Chem. Soc. 1993, 115, 9872. Boger, D. L.;
J ohnson, D. S.; Yun, W. J . Am. Chem. Soc. 1994, 116, 1635.
(4) Boger, D. L.; J ohnson, D. S. J . Am. Chem. Soc. 1995, 117, 1443.
Boger, D. L.; J ohnson, D. S.; Yun, W.; Tarby, C. M. Bioorg. Med. Chem.
1994, 2, 115. Boger, D. L.; Zarrinmayeh, H.; Munk, S. A.; Kitos, P. A.;
Suntornwat, O. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1431. Boger,
D. L.; Munk, S. A.; Zarrinmayeh, H. J . Am. Chem. Soc. 1991, 113,
3980. Boger, D. L.; Coleman, R. S.; Invergo, B. J .; Sakya, S. M.;
Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S.
C. J . Am. Chem. Soc. 1990, 112, 4623.
(5) Sugiyama, H.; Hosoda, M.; Saito, I.; Asai, A.; Saito, H. Tetrahe-
dron Lett. 1990, 31, 7197. Sugiyama, H.; Ohmori, K.; Chan, K. L.;
Hosoda, M.; Asai, A.; Saito, H.; Saito, I. Tetrahedron Lett. 1993, 34,
2179. Yamamoto, K.; Sugiyama, H.; Kawanishi, S. Biochemistry 1993,
32, 1059. Asai, A.; Nagamura, S.; Saito, H. J . Am. Chem. Soc. 1994,
116, 4171.
(6) Reynolds, V. L.; Molineux, I. J .; Kaplan, D. J .; Swenson, D. H.;
Hurley, L. H. Biochemistry 1985, 24, 6228. Hurley, L. H.; Lee, C.-S.;
McGovren, J . P.; Warpehoski, M. A.; Mitchell, M. A.; Kelly, R. C.;
Aristoff, P. A. Biochemistry 1988, 27, 3886. Hurley, L. H.; Warpehoski,
M. A.; Lee, C.-S.; McGovren, J . P.; Scahill, T. A.; Kelly, R. C.; Mitchell,
M. A.; Wicnienski, N. A.; Gebhard, I.; J ohnson, P. D.; Bradford, V. S.
J . Am. Chem. Soc. 1990, 112, 4633.
(7) Boger, D. L.; Turnbull, P. J . Org. Chem. 1998, 63, 8004.
(8) Boger, D. L.; Turnbull, P. J . Org. Chem. 1997, 62, 5849.
(9) Boger, D. L.; Nishi, T.; Teegarden, B. R. J . Org. Chem. 1994,
59, 4943.
(10) Boger, D. L.; Santilla´n, A., J r.; Searcey, M.; J in, Q. J . Am. Chem.
Soc. 1998, 120, 11554.
10.1021/jo990452y CCC: $18.00 © 1999 American Chemical Society
Published on Web 06/24/1999