1226
B. Witulski
LETTER
Hartwig, J. F. Synlett 1997, 329. Guari, Y.; van Es, D. S.;
Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Tetrahedron Lett. 1999, 40 3789. Wang, Z.; Skerlj, R. T.;
Bridger, G. J. Tetrahedron Lett. 1999, 40, 3543. Shakespeare,
W. C.; Tetrahedron Lett. 1999, 40, 2035. Bei, X.; Guram, A.
S.; Turner, H. W.; Weinberg, W. H. Tetrahedron Lett. 1999,
40, 1237. Mendiratta, A.; Barlow, S.; Day, M. W.; Marder, S.
R. Organometallics 1999, 18, 454. Old, D. W.; Wolfe, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722. Sadighi,
J. P.; Harris, M. C.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
39, 5327. Sadighi, J. P.; Singer, R. A.; Buchwald, S. L. J. Am.
Chem. Soc. 1998, 120, 4960. Hori, K.; Mori, M. J. Am. Chem.
Soc. 1998, 120, 7651. Mann, G.; Hartwig, J. F.; Driver, M. S.;
Fernández-Rivas, C. J. Am. Chem. Soc. 1998, 120, 827.
Nishiyama, M.; Yamamoto, T.; Koie, Y. Tetrahedron Lett.
1998, 39, 617. Yamamoto, T.; Nishiyama, M.; Koie, Y.
Tetrahedron Lett. 1998, 39, 2367. Abouabdellah, A.; Dodd, R.
H. Tetrahedron Lett. 1998, 39, 2119. Kerrigan, F.; Martin, C.;
Thomas, G. H. Tetrahedron Lett. 1998, 2219. Wüllner, G.;
Jänsch, H.; Kannenberg, S.; Schubert, F.; Boche, G. Chem.
Commun. 1998, 1509. Blom, C.; Hildebrand, J. P.
0.06 mmol), PPh3 (32 mg, 0.12 mmol), and toluene (10 ml).
The sealed tube was kept at 100 oC for 2 days. The reaction
mixture was diluted with CH2Cl2 and filtered through a plug
of celite. After evaporation of the solvent the organic residue
was chromatographed. Column chromatography (Al2O3,
AcOEt with 0.5% MeOH) gave 10 (115 mg, 0.26 mmol)
[25%] as minor product and 12 (516 mg, 0.73 mmol) [73%] as
major product.
12: colorless oil, Rf: 0.3 (Al2O3-TLC, AcOEt/MeOH =
95.5:0.5 (v/v)); 1H NMR (400 MHz, CDCl3) d = 7.73 (d, J =
8.8 Hz, 4 H), 6.69 (d, J = 8.8 Hz, 4 H), 3.69 (m, 32 H), 3.72
(m, 16 H); 13C NMR (200 MHz, CDCl3/TMS) d = 193.5 (s),
150.6 (s), 132.3 (d), 126.1 (s), 110.3 (d), 70.8 (t), 70.7 (t),
70.75 (t), 68.4 (t), 51.3 (t); MS (EI, 70 eV) m/z (%): 704 (100,
M+), 486 (15), 372 (10), 232 (45); C37H56N2O11 (704.86) calc.:
704.3884; found: 704.3884.
(15) 10: colorless oil, Rf: 0.3 (Al2O3-TLC, hexanes/AcOEt = 4:6
(v/v)); 1H NMR (400 MHz, CDCl3) d = 7.77 (d, J = 8.8 Hz, 2
H), 7.71 (d, J = 7.6 Hz, 2 H), 7.52 (“t“, J ≈ 7.6 Hz, 2 H), 6.69
(d, J = 8.8 Hz, 2H), 3.5-3.7 (m, 24 H); 13C NMR (200 MHz,
CDCl3/TMS) d = 194.9 (s), 151.4 (s), 139.2 (s), 132.9 (d),
131.1 (d), 129.4 (d), 127.0 (d), 124.7 (s), 110.4 (d), 70.8 (t),
70.76 (t), 70.74 (t), 70.61 (t), 68.4 (t); C25H33NO6 (443.54)
calc.: C 67.70, H 7.50, N 3.16; found: C 67.29, H 7.51, N 3.10.
(16) 14: colorless oil, Rf: 0.5 (Al2O3-TLC, hexanes/AcOEt = 1:1
(v/v)); 1H NMR (400 MHz, CDCl3) d = 8.10 (ddd, J = 5.0 Hz,
J = 2.0 Hz, J = 0.8 Hz, 1 H), 7.40 (ddd, J = 8.7 Hz, J = 7.0 Hz,
J = 2.0 Hz, 1 H), 6.56 (d, J = 8.7 Hz, 1 H), 6.50 (ddd, J = 7.0
Hz, J = 5.0 Hz, J = 0.8 Hz, 1 H), 3.64-3.79 (m, 24 H); 13C NMR
(200 MHz, CDCl3/TMS) d = 157.8 (s), 147.8 (d), 137.0 (d),
111.3 (d), 105.7 (d), 70.8 (t), 70.7 (t), 70.65 (t), 70.6 (t), 69.2
(t); C17H28N2O5 (340.42) calc.: C 59.98, H 8.29, N 8.23;
found: C 59.63, H 8.16, N 8.02.
(17) For cross coupling reactions of 13 with morpholine (2d) and
allyl amines see: Wagaw, S.; Buchwald, S. L. J. Org. Chem.
1996, 61, 7240. Jaime-Figueroa, S.; Liu, Y.; Muchowski, J.
M.; Putman, D. G. Tetrahedron Lett. 1998, 39, 1313.
(18) 16: colorless oil; Rf: 0.25 (Al2O3-TLC, hexanes/AcOEt = 3:7
(v/v)); 1H NMR (400 MHz, CDCl3) d = 7.22 (t, J = 8.0 Hz,
1H), 5.79 (d, J = 8.0 Hz, 2H), 3.62-3.70 (m, 48 H); 13C NMR
(200 MHz, CDCl3/TMS) d = 156.6 (s), 138.5 (d), 92.5 (d),
70.8 (t), 70.75 (t), 70.7 (t), 70.6 (t), 69.5 (t), 49.5 (t);
C29H51N3O10 (601.74) calc.: C 57.89, H 8.54, N 6.98; found:
C 57.85, H 8.55, N 6.81.
Tetrahedron Lett. 1998, 39, 5731. Kamikawa, K.; Sugimoto,
S.; Uemura, M. J. Org. Chem. 1998, 63, 8407. Guram, S.;
Rennels, R. A.; Buchwald, S. L. Angew. Chem. 1995, 107,
1456; Angew. Chem. Int. Ed. Engl. 1995, 34, 1348.
(8) Some representative references include the following:
Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120,
7369. Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996,
118, 7217. Wolfe, J. P. Wagaw, S.; Buchwald, S. L. 1996,
118, 7215.
(9) The catalyst system Pd(0)/PPh3 was used for intramolecular
aryl amination reactions. However, it was described as less
effective for intermolecular aminations with primary and
secondary amines: Peat, A. J.; Buchwald, S. L. J. Am. Chem.
Soc. 1996, 118, 1028. Wolfe, J. P.; Rennels, R. A.; Buchwald,
S. L. Tetrahedron 1996, 52, 7525.
(10) It is assumed that Pd(OAc)2 is reduced to a Pd(0) species
under the reaction conditions.
(11) All new compounds were characterized by IR, MS, 1H- and
13C-NMR, elemental analysis and/or HRMS. 3a and 3b have
been synthesized previously by other means: Dix, J. P.;
Vögtle, F. Angew. Chem. 1978, 90, 893; Angew. Chem. Int.
Ed. Engl. 1978, 11, 857.
(12) Cone angle q [0]: P(o-tol)3 [194]; P(t-Bu)3 [182]; PPh3 [145].
Tolman, C. A. Chem. Rev. 1977, 77, 313.
(19) 18: colorless needles (CHCl3/pentane); m.p. 86-87 oC; Rf:
0.25 (Al2O3-TLC, hexanes/AcOEt = 1:9 (v/v)); 1H NMR (400
MHz, CDCl3) d = 7.58 (“d“, J ≈ 7 Hz, 2 H), 7.50 (“t“, J ≈ 8 Hz,
2 H); 6.55 (d, J = 8.3 Hz, 2 H, 3.67-3.86 (m, 48 H); 13C NMR
(200 MHz, CDCl3/TMS) d = 156.9 (s), 154.7 (s), 137.7 (d),
108.5 (d), 105.4 (d), 70.8 (t), 70.75 (t), 70.70 (t), 70.6 (t), 69.2
(t), 49.6 (t); C34H54N4O10 (678.82) calc.: C 60.16, H 8.02, N
8.25; found: C 60.11, H 7.89, N 8.14.
(20) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120,
3694. Hartwig, J. F.; Richards, S.; Barañano, D.; Frédéric, P.
J. Am. Chem. Soc. 1996, 118, 3629, and references therein.
(21) Kishii, N.; Araki, K.; Shiraishi, S. Bull. Chem. Soc. Jpn. 1984,
57, 2121.
(13) The same catalyst yielded 4 in 95% in the absence of an
amine, whereas omitting the catalyst did not yield any 4.
Mixtures of aryl amines and aryl ethers were also found with
other electron poor aryl bromides and BINAP as ligand
indicating that reductive eliminations of Pd-alkoxide
intermediates can compete with reductive eliminations of Pd-
imido intermediates when electron poor aryl bromides are
involved. (B. Witulski, S. Senft, A. Thum, unpublished
results). For Pd-catalyzed cross-coupling reactions of aryl
bromides with alkoxides see: Mann, G.; Incarvito, C.;
Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121,
3224. Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem.
Soc. 1996, 118, 10333.
(14) Typical procedure: In a Schlenk tube with screw cap were
introduced under argon 4,4´-dibromobenzophenone (11) (340
mg, 1 mmol), carefully dried aza-18-crown-6 (2a) (640 mg,
2.4 mmol), NaOtBu (250 mg, 2.6 mmol), Pd(OAc)2 (14 mg,
Article Identifier:
1437-2096,E;1999,0,08,1223,1226,ftx,en;G13499ST.pdf
Synlett 1999, No. 8, 1223–1226 ISSN 0936-5214 © Thieme Stuttgart · New York