Organic Letters
Letter
(9) For a review on β-lactam synthesis through ester enolate−imine
cyclization reactions, see: Hart, D. J.; Ha, D. C. Chem. Rev. 1989, 89,
1447−1465.
(10) For an example of an intramolecular ester enolate−imine
cyclization reaction, see: Evans, C. D.; Mahon, M. F.; Andrews, P. C.;
Muir, J.; Bull, S. D. Org. Lett. 2011, 13, 6276−6279.
oxadiazoles. A wide range of substituents was tolerated on both
the benzenoid ring and the hydrazone moiety, forming the
functionalized fused tricyclic products in high yields under mild
reaction conditions.
ASSOCIATED CONTENT
(11) For selected examples, see: (a) Jin, L.; Chen, J.; Song, B.; Chen,
Z.; Yang, S.; Li, Q.; Hu, D.; Xu, R. Bioorg. Med. Chem. Lett. 2006, 16,
5036−5040. (b) Lee, L.; Robb, L. M.; Lee, M.; Davis, R.; Mackay, H.;
Chavda, S.; Babu, B.; O’Brien, E. L.; Risinger, A. L.; Mooberry, S. L.;
Lee, M. J. Med. Chem. 2010, 53, 325−334. (c) Ishii, M.; Jorge, S. D.; de
Oliveira, A. A.; Palace-Berl, F.; Sonehara, I. Y.; Pasqualoto, K. F. M.;
Tavares, L. C. Bioorg. Med. Chem. 2011, 19, 6292−6301. (d) Maccioni,
E.; Alcaro, S.; Cirilli, R.; Vigo, S.; Cardia, M. C.; Sanna, M. L.;
Meleddu, R.; Yanez, M.; Costa, G.; Casu, L.; Matyus, P.; Distinto, S. J.
Med. Chem. 2011, 54, 6394−6398. (e) Hu, Y.; Lu, X.; Chen, K.; Yan,
R.; Li, Q.-S.; Zhu, H.-L. Bioorg. Med. Chem. 2012, 20, 903−909.
(f) Yan, R.; Zhang, Z.-M.; Fang, X.-Y.; Hu, Y.; Zhu, H.-L. Bioorg. Med.
Chem. 2012, 20, 1373−1379. (g) Grishko, V. V.; Tolmacheva, I. A.;
Galaiko, N. V.; Pereslavceva, A. V.; Anikina, L. V.; Volkova, L. V.;
Bachmetyev, B. A.; Slepukhin, P. A. Eur. J. Med. Chem. 2013, 68, 203−
211.
■
S
* Supporting Information
The Supporting Information is available free of charge on the
1
Experimental procedures, H and 13C{1H} NMR spectra
for all novel compounds (PDF)
Crystallographic data for 20 (CIF)
AUTHOR INFORMATION
■
Corresponding Authors
Notes
(12) For a single example of a fused bicyclic 2,3-dihydro-1,3,4-
oxadiazole investigated as an antioxidant, see: El Sadek, M.; Abd El-
Dayem, N.; Hassan, S.; Mostafa, M.; Yacout, G. Molecules 2014, 19,
5163−5190.
The authors declare no competing financial interest.
(13) (a) Ott, I.; Kircher, B.; Heinisch, G.; Matuszczak, B. J. Med.
Chem. 2004, 47, 4627−4630. (b) Samet, A. V.; Marshalkin, V. N.;
Kislyi, K. A.; Chernysheva, N. B.; Strelenko, Y. A.; Semenov, V. V. J.
Org. Chem. 2005, 70, 9371−9376. (c) Liu, Y.; Chu, C.; Huang, A.;
Zhan, C.; Ma, Y.; Ma, C. ACS Comb. Sci. 2011, 13, 547−553. (d) Liu,
X.-H.; Jia, Y.-M.; Song, B.-A.; Pang, Z.-x.; Yang, S. Bioorg. Med. Chem.
Lett. 2013, 23, 720−723. (e) Hajishaabanha, F.; Shaabani, A. RSC Adv.
2014, 4, 46844−46850.
ACKNOWLEDGMENTS
■
We thank the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007−2013)
ERC Grant Agreement No. 279850 (A.D.S. and J.E.T.) and
The Leverhulme Trust for an Early Career Fellowship (J.E.T.).
We also thank the EPSRC UK National Mass Spectrometry
Facility at Swansea University.
(14) Leaving the uncatalyzed reaction for 3 h allows 6 to be isolated
in 79% yield.
(15) Reaction with the enantiomerically pure isothiourea HyperBTM
1 led to formation of racemic 6.
(16) See the Supporting Information for details.
(17) CCDC 1430692 contains the supplementary crystallographic
data for 2,3-dihydro-1,3,4-oxadiazole 20.
REFERENCES
■
(1) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley: 2010.
(2) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001,
123, 7945−7946.
(3) For a review on the Lewis base functionalization of carboxylic
acids, see: Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 6214−
6226.
(18) The data underpinning this research can be found at DOI:
(4) For a review on isothioureas in organocatalysis, see: Taylor, J. E.;
Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109−2121.
(5) For seminal examples, see: (a) Belmessieri, D.; Morrill, L. C.;
Simal, C.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011, 133,
2714−2720. (b) Simal, C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D.
Angew. Chem., Int. Ed. 2012, 51, 3653−3657. (c) Morrill, L. C.; Lebl,
T.; Slawin, A. M. Z.; Smith, A. D. Chem. Sci. 2012, 3, 2088−2093.
(d) Morrill, L. C.; Douglas, J.; Lebl, T.; Slawin, A. M. Z.; Fox, D. J.;
Smith, A. D. Chem. Sci. 2013, 4, 4146−4155.
(6) For selected examples of heterocycle synthesis using isothiourea
catalysis, see: (a) Belmessieri, D.; Cordes, D. B.; Slawin, A. M. Z.;
Smith, A. D. Org. Lett. 2013, 15, 3472−3475. (b) Stark, D. G.; Morrill,
L. C.; Yeh, P.-P.; Slawin, A. M. Z.; O'Riordan, T. J. C.; Smith, A. D.
Angew. Chem., Int. Ed. 2013, 52, 11642−11646. (c) Belmessieri, D.; de
la Houpliere, A.; Calder, E. D. D.; Taylor, J. E.; Smith, A. D. Chem. -
Eur. J. 2014, 20, 9762−9769. (d) Stark, D. G.; O’Riordan, T. J. C.;
Smith, A. D. Org. Lett. 2014, 16, 6496−6499. (e) Yeh, P.-P.; Daniels,
D. S. B.; Cordes, D. B.; Slawin, A. M. Z.; Smith, A. D. Org. Lett. 2014,
16, 964−967.
(7) (a) Smith, S. R.; Douglas, J.; Prevet, H.; Shapland, P.; Slawin, A.
M. Z.; Smith, A. D. J. Org. Chem. 2014, 79, 1626−1639. (b) Morrill, L.
C.; Smith, S. M.; Slawin, A. M. Z.; Smith, A. D. J. Org. Chem. 2014, 79,
1640−1655.
(8) (a) Durckheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann, K.
̈
H. Angew. Chem., Int. Ed. Engl. 1985, 24, 180−202. (b) Alcaide, B.;
Almendros, P.; Aragoncillo, C. Chem. Rev. 2007, 107, 4437−4492.
D
Org. Lett. XXXX, XXX, XXX−XXX