Scheme 1
.
Aza-Darzens Reaction versus Addition Reaction
Table 2. Effect of Solventa
entry
solvent
Et2O
CH2Cl2
CH3CN
mesitylene
benzene
toluene
3ab (yield, %)
3ac (ee, %)
1
69
72
71
76
64
78
72
89
87
81
87
89
90
94
2b
3b
4b
5
path b).13 We wish to report herein chiral phosphoric acid
catalyzed aza-Darzens reaction leading to aziridines (Scheme
1, path a).
6
7
toluene (-30 °C)
a 2.0 equiv of ethyl diazoacetate was employed. b Yield of isolated
product. c Enantiomeric excess was determined by chiral HPLC analysis.
At the outset, aza-Darzens reaction of an aldimine 2,
derived from phenylglyoxal and p-anisidine, with R-diaz-
oacetate was examined using phosphoric acid 1.14 Treatment
of 2 with ethyl diazoacetate in the presence of 10 mol % of
phosphoric acid 1 in toluene at 0 °C furnished cis-aziridine
3 accompanied by 4.15 The effects of the 3,3′-substituents
were studied, and the results are shown in Table 1. The
Interestingly, although 1d, bearing triphenylsilyl groups, was
not effective (entry 4), use of 1e having a tris(p-tert-
butylphenyl)silyl group proved to be highly effective (entry
5), and the corresponding aziridine 3 was obtained in 90%
ee. It was found that the introduction of a bulky substituent
to the terminal position on the phenyl group significantly
improved the enantioselectivity. Recently, both Yamamoto16
and List17 demonstrated the beneficial effect of introducing
a bulky group to the terminal position of the 3,3′-positions.
We then studied the effect of solvent in the presence of 5
mol % of 1e, and the results are shown in Table 2. Aromatic
Table 1. Effect of the 3,3′-Substituents of Chiral Phosphoric
Acid 1a
(9) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. 2008,
130, 14380–14382.
(10) For reviews on Brønsted acid catalysis, see: (a) Akiyama, T.; Itoh,
J.; Fuchibe, K. AdV. Synth. Catal. 2006, 348, 999–1010. (b) Akiyama, T.
Chem. ReV. 2007, 107, 5744–5758. (c) Connon, S. J. Angew. Chem., Int.
Ed. 2006, 45, 3909–3912. (d) Terada, M. Chem. Commun. 2008, 4097–
4112, and references cited therein.
entry
X
3b (yield, %) 3c (ee, %) 4b (yield, %)
1
2
3
4
5
4-NO2C6H4
9-anthryl
2,4,6-(i-Pr)3C6H2
SiPh3
69
63
53
80
81
-17
-64
-88
-22
90
13
18
34
20
17
(11) For our reports, see: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe,
K. Angew. Chem., Int. Ed. 2004, 43, 1566–1568. (b) Akiyama, T.; Morita,
H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583–2585. (c) Akiyama, T.;
Saitoh, Y.; Morita, H.; Fuchibe, K. AdV. Synth. Catal. 2005, 347, 1523–
1526. (d) Akiyama, T.; Itoh, J.; Fuchibe, K. AdV. Synth. Catal. 2006, 348,
999–1010. (e) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc.
2006, 128, 13070–13071. (f) Akiyama, T.; Tamura, Y.; Itoh, J.; Morita,
H.; Fuchibe, K. Synlett 2006, 141–143. (g) Yamanaka, M.; Itoh, J.; Fuchibe,
K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756–6764. (h) Akiyama,
T.; Honma, Y.; Itoh, J.; Fuchibe, K. AdV. Synth. Catal. 2008, 350, 399–
402. (i) Itoh, J.; Fuchibe, K.; Akiyama, T. Synthesis 2008, 1319–1322. (l)
Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008, 47, 4016–
4018.
Si(4-(t-Bu)C6H4)3
a 2.0 equiv of ethyl diazoacetate was employed. b Yield of isolated
product. c Enantiomeric excess was determined by chiral HPLC analysis.
enantioselectivities were determined by chiral HPLC analy-
sis. TRIP (1c) exhibited high enantioselectivity (entry 3).
(5) (a) Shen, Y.-M.; Zhao, M.-X.; Xu, J.; Shi, Y. Angew. Chem., Int.
Ed. 2006, 45, 8005–8008. (b) Vesely, J.; Ibrahem, I.; Zhao, G.-L.; Rios,
R.; Cordova, A. Angew. Chem., Int. Ed. 2007, 46, 778–781. (c) Pesciaioli,
F.; Vincentiis, F. D.; Galzerano, P.; Bencivenni, G.; Bartoli, G.; Mazzanti,
A.; Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47, 8703–8706.
(6) For Lewis acid catalysis, see: (a) Casarrubios, L.; Pe´rez, J. A.;
Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996, 61, 8358–8359. (b)
Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612–1613.
(7) (a) Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. 1999, 121, 5099–
5100. (b) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39,
4518–4521. (c) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007,
129, 7185–7194. (d) Zhang, Y.; Desai, A.; Lu, Z.; Hu, G.; Ding, Z.; Wulff,
W. D. Chem.sEur. J. 2008, 14, 3785–3803.
(12) For selected examples, see: (a) Uraguchi, D.; Terada, M. J. Am.
Chem. Soc. 2004, 126, 5356–5357. (b) Nakashima, D.; Yamamoto, H. J. Am.
Chem. Soc. 2006, 128, 9626–9627. (c) Storer, R. I.; Carrera, D. E.; Ni, Y.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84–86. (d) Wanner,
M. J.; Haas, R. N. S. v. d.; Cuba, K. R. d.; Maarseveen, J. H. v.; Hiemstra,
H. Angew. Chem., Int. Ed. 2007, 46, 7485–7487. (e) Rowland, E. B.;
Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. J. Am. Chem. Soc. 2007,
129, 12084–12085. (f) Chen, X.-H.; Zhang, W.-Q.; Gong, L.-Z. J. Am.
Chem. Soc. 2008, 130, 5652–5653. (g) Wang, X.; Reisinger, C. M.; List,
B. J. Am. Chem. Soc. 2008, 130, 6070–6071. (h) Xu, S.; Wang, Z.; Zhang,
X.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2008, 47, 2840–2843. (i)
Enders, D.; Narine, A. A.; Toulgoat, F.; Bisschops, T. Angew. Chem., Int.
Ed. 2008, 47, 5661–5665. (j) Rueping, M.; Antonchick, A. P. Angew. Chem.,
Int. Ed. 2008, 47, 5836–5838. (k) Rueping, M.; Antonchick, A. P.; Sugiono,
E.; Grenader, K. Angew. Chem., Int. Ed. 2009, 48, 908–910. (l) Schrader,
W.; Handayani, P. P.; Zhou, J.; List, B. Angew. Chem., Int. Ed. 2009, 48,
1463–1466. (m) Terada, M.; Tanaka, H.; Sorimachi, K. J. Am. Chem. Soc.
2009, 131, 3430–3431.
(8) For asymmetric aziridination with chiral sulfur ylides, see: (a)
Aggarwal, V. K.; Thompson, A.; Jones, R. V. H.; Standen, M. C. H. J.
Org. Chem. 1996, 61, 8368–8369. (b) Aggarwal, V. K.; Alonso, E.; Fang,
G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001,
40, 1433–1436.
2446
Org. Lett., Vol. 11, No. 11, 2009