8112
J. Am. Chem. Soc. 1999, 121, 8112-8113
Intramolecular Nucleophilic Substitution on
Coordinated Borabenzenes: A New Entry into
Boratabenzene Complexes
Markus A. Putzer, Jonathan S. Rogers, and
Guillermo C. Bazan*
Department of Chemistry, UniVersity of California
Santa Barbara, California 93106
ReceiVed April 5, 1999
Electrophilic complexes containing boratabenzene ligands1 are
finding applications in olefin polymerization and oligomerization
reactions.2 Most significant is the ability to control the reactivity
of boratabenzene catalysts by adjusting the degree of orbital
overlap between boron and its exocyclic substituent.3 Borataben-
zene catalysts have appeared with reactivities that complement
those observed with standard group 4 metallocenes.4 Furthermore,
while both cyclopentadienyl (Cp) and boratabenzene are formally
monoanionic 6π electron donors, boratabenzene is a weaker
donor.5 Isostructural complexes containing boratabenzene instead
of Cp therefore have a greater tendency for lower oxidation states
and offer altered mechanistic pathways for elementary reactions.6
One of the main difficulties in advancing a broader use of
boratabenzene complexes in industry7 and in noncatalytic reactions
useful for organic chemistry8 is the multistep synthesis of the
boratabenzene framework.9 Methods for coordination typically
make direct analogy to Cp chemistry, namely, salt metathesis by
addition of ligand salts to metal halides.10 In this paper we report
a new type of reaction that gives transition metal-boratabenzene
complexes directly from neutral borabenzene-base adducts.
As shown in Scheme 1, our approach involves the reaction of
a neutral borabenzene-base adduct11 (C5H5B-L′, 1‚L′, where
L′ ) PMe3 or Py) with a suitable early transition metal complex.
For example, addition of C5H5B-PMe3 (1‚PMe3) to Ph3Sc-
(THF)2 provides (C5H5B-Ph)ScPh2(THF) (2 in eq 1) quantita-
Figure 1. ORTEP view of 2. Thermal ellipsoids are shown at the 30%
probability level; hydrogen atoms were omitted for clarity.
Scheme 1
tively by 1H NMR spectroscopy. A single-crystal diffraction study
of 2 reveals that the molecule can be described as a three-legged
piano stool and that it contains a nearly planar boratabenzene
ligand (Figure 1). There is a slight slip-distortion of scandium
away from boron and toward the more electron-rich carbons of
the ring (in Å, average Sc-Cγ ) 2.545(3), average Sc-Câ )
2.571(3), Sc-CR ) 2.613(3)). The Sc-Cipso bond distances
(2.214(3) and 2.231(3) Å) lie within the range of the sum of their
covalent radii.12
Repeating the process by addition of 1 equiv of 1‚PMe3 to 2
in toluene affords the bis(boratabenzene)scandium complex (3
in eq 1). In THF, 3 exists as the colorless adduct (C5H5B-Ph)2-
ScPh(THF), 3(THF). Removal of THF by repeated chlorobenzene
condensation/evaporation cycles produces green [(C5H5B-Ph)2-
ScPh]2 (32). The nuclearity and composition of 32 was confirmed
by matching the isotopic distribution obtained by mass spectrom-
etry with calculated values. The reactions of 1‚PMe3 with (Me3-
13
SiCH2)3Sc(THF)2 or (PhMe2CCH2)3Sc(THF) are analogous to
those described for Ph3Sc(THF)2 by 1H NMR spectroscopy;
however, the resulting products are thermally unstable oils which
are difficult to obtain in pure form.
(1) (a) Herberich, G. E.; Holger, O. AdV. Organomet. Chem. 1986 25, 199.
(b) Herberich, G. E. Spec. Publ.sR. Soc. Chem. 1997, 201 (Advances in Boron
Chemistry), 211.
(2) (a) Bazan, G. C.; Rodriguez, G.; Ashe, A. J., III; Al-Ahmad, S.; Mu¨ller,
C. J. Am. Chem. Soc. 1996, 118, 2291. (b) Bazan, G. C.; Rodriguez, G.; Ashe,
A. J., III; Al-Ahmad, S.; Kampf, J. W. Organometallics 1997, 16, 2492.
(3) Rogers, J. S.; Bazan, G. C.; Sperry, C. K. J. Am. Chem. Soc. 1997,
119, 9305.
(4) (a) Transition Metals and Organometallics as Catalysts for Olefin
Polymerization; Kaminsky, W., Sinn, H., Eds.; Springer-Verlag: Berlin, 1988.
(b) Ziegler Catalysts; Fink, G., Mu¨lhaupt, R., Brintzinger, H.-H., Eds.;
Springer-Verlag: Berlin, 1995. (c) Brintzinger, H.-H.; Fischer, D.; Mu¨lhaupt,
R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34,
1143.
(5) Sperry, C. K.; Bazan, G. C.; Cotter, W. D. J. Am. Chem. Soc. 1999,
121, 1513.
(6) Kowal, C. M.; Bazan, G. C. J. Am. Chem. Soc. 1996, 118, 10317.
(7) (a) Krishnamurti, R.; Nagy, S.; Etherton, B. P. U.S. Patent 5,554,775
(Occidental Chemical Corporation), September 10, 1996. (b) Herberich, G.
E. Ger. Patent DE 19549352, June 26, 1997.
(8) (a) ComprehensiVe Organometallic Chemistry; Abel, E. W., Stone, F.
G. A., Wilkinson, G., Eds.; Hegedus, L. S., Volume Ed.; Elsevier Science,
Ltd.: Oxford, 1995; Vol. 12. (b) Metallocenes: Synthesis, ReactiVity,
Applications; Togni, A., Halterman, R. L., Eds.; Wiley-VCH: Weinheim, 1998.
(9) (a) Ashe, A. J., III; Shu, P. J. Am. Chem. Soc. 1971, 93, 1804. (b)
Herberich, G. E.; Schmidt, B.; Englert, U.; Wagner, T. Organometallics 1993,
12, 2891. (c) Hoic, D. A.; Wolf, J. R.; Davis, W. M.; Fu, G. C. Organometallics
1996, 15, 1315. (d) Herberich, G. E.; Englert, U.; Schmidt, M. U.; Standt, R.
Organometallics 1996, 15, 2707.
Tetrabenzylzirconium and 1‚PMe3 react quickly in C6D6 to give
(C5H5B-CH2Ph)Zr(CH2Ph)3 (4 in eq 2). With group 4 complexes,
the pyridine adduct, 1‚Py, gives similar results to 1‚PMe3. The
formation of (C5H5B-CH2Ph)2Zr(CH2Ph)2 (5 in eq 2) from 4 and
1‚PMe3 is considerably slower, requiring 3 days at room tem-
perature. The molecular structure of 5 was confirmed by single-
crystal diffraction and is included in the Supporting Information.
Starting with Hf(CH2Ph)4 and 1‚PMe3 one obtains (C5H5B-CH2-
(10) Exceptions: (a) Herberich, G. E.; Greiss, G.; Heil, H. F. Angew. Chem.,
Int. Ed. Engl. 1970, 9, 805. (b) Herberich, G. E.; Englert, U.; Schmitz, A.
Organometallics 1997, 16, 3751.
(11) (a) Boese, R.; Finke, N.; Henkelmann, J.; Maier, G.; Paetzold, P.;
Reisenauer, H. P.; Schmid, G. Chem. Ber. 1985, 118, 1644. (b) Qiao, S.;
Hoic, D. A.; Fu, G. C. J. Am. Chem. Soc. 1996, 118, 6329.
(12) r(Sc) + r(C) ) 1.44 Å + 0.77 Å ) 2.21 Å, from Lange’s Handbook
of Chemistry, 13th ed.; Dean, J. A., Ed.; McGraw-Hill Book Company: New
York, 1985.
(13) Lappert, M. F.; Pearce, R. J. Chem. Soc., Chem. Commun. 1973, 126.
(14) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113,
3623.
(15) Chien, J. C. W.; Tsai, W.; Rausch, M. D. J. Am. Chem. Soc. 1991,
113, 8570.
10.1021/ja9910661 CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/20/1999