C O M M U N I C A T I O N S
and Au(III) complexes,14,15 different catalytic performance of Au-
complexes in different oxidation states, and particularly the ligand
effect, which has received only limited attention.1c,8d,16
Acknowledgment. This work was supported by Hundreds of
Talents Program of CAS, Natural Science Foundation of Jiangsu
Province (BK2005030), and NIH of the U.S. (Grant GM-64444). We
thank Prof. Z.-X. Yu of Peking University for helpful discussion.
Supporting Information Available: Computational and experimental
details. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) For recent reviews, see: (a) Hashmi, A. S. K.; Hutchings, G. J. Angew.
Chem., Int. Ed. 2006, 45, 7896. (b) Zhang, L.; Sun, J.; Kozmin, S. A. AdV.
Synth. Catal. 2006, 348, 2271. (c) Gorin, D. J.; Toste, F. D. Nature 2007,
446, 395. (d) Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180.
(2) (a) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005,
127, 10500. (b) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.;
Kel’in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440.
(3) For higher oxophilicity of AuCl3 compared to that of AuCl, see: Yamamoto,
Y. J. Org. Chem. 2007, 72, 7817.
(4) (a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076. (b) Fu¨rstner, A.; Davies,
P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
(5) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990.
Figure 1. Potential energy surfaces for AuCl3- and Au(PR′3)Cl-catalyzed
cycloisomerizations (R ) CH3, R′ ) H).7
(6) Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105.
(7) B3LYP/6-31G*(LANL2DZ for Au and Br) method was used for all the
calculations, and solvation effect was calculated by CPCM model. See
Supporting Information for details.
Scheme 2. Experimental Results of Au(I)-Catalyzed Reactions10
(8) For selected examples of DFT studies in gold chemistry, see: (a) Nevado,
C.; Echavarren, A. M. Chem. Eur. J. 2005, 11, 3155. (b) Comas-Vives,
A.; Gonza´lez-Arellano, C.; Corma, A.; Iglesias, M.; Sa´nchez, F.; Ujaque,
G. J. Am. Chem. Soc. 2006, 128, 4756. (c) Shi, F.-Q.; Li, X.; Xia, Y.;
Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503. (d) Kova´cs, G.;
Ujaque, G.; Lledo´s, A. J. Am. Chem. Soc. 2008, 130, 853. (e) Nieto-
Oberhuber, C.; Lo´pez, S.; Mun˜oz, M. P.; Ca´rdenas, D. J.; Bun˜uel, E.;
Nevado, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005, 44, 6146. (f)
mol in toluene. Thus, the overall barrier for the chloride-assisted
H-migration process from 9 to the complex 8 is only 8.7 kcal/mol .
On the basis of these results, we hypothesized that if no labile
chloride ligand is present in a Au(I)-catalyzed cycloisomerization (e.g.,
using cationic Au(I) or AuCl complexes), the reaction may proceed
via a predominant 1,2-Br migration. As predicted, our experiments
indicated that employment of AuCl or cationic catalysts, such as
Au(PPh3)BF4 and Au(PPh3)SbF6, produced the 1,2-Br migration
product A as a major or sole isomer (Scheme 2).10 Unexpectedly, use
of Au(PPh3)OTf led to exclusive formation of the 1,2-H shift product
B, thus, exhibiting a dramatic counterion effect on the regioselectivity
of the reaction. The DFT calculations shed light on this seeming
controversy.8d,10 The computations revealed that in both Au(PR3)+
and AuCl-catalyzed reactions, the 1,2-Br migration is more favorable
with the activation barrier about 13 kcal/mol. However, 1,2-H shift in
Au(PR3)+-catalyzed reactions can be assisted by the counterions. Thus,
it was found that the OTf--assisted 1,2-H shift requires an activation
´
Faza, O. N.; Lo´pez, C. S.; Alvarez, R.; de Lera, A. R. J. Am. Chem. Soc.
2006, 128, 2434. (g) Correa, A.; Marion, N.; Fensterbank, L.; Malacria,
M.; Nolan, S. P.; Cavallo, L. Angew. Chem., Int. Ed. 2008, 47, 718.
(9) Our computational studies confirmed possible formation of the originally
proposed Au(III)-coordination complex d (Scheme 1);2 however, neither
cyclization transition state nor halirenium intermediate e were located.
(10) See Supporting Information for experimental and computational details.
(11) Possible involvement of Brønsted acid as a true catalyst was ruled out by
control experiments. Besides, addition of TTBP, a proton scavenger, did
not inhibit the Au-catalyzed cycloisomerization.10
(12) The Au-Cl distances in Au(PH3)Cl, 5, 6, and 9 are 2.327, 2.481, 2.573,
and 2.561 Å, respectively. See Supporting Information for bond critical
point analysis of the weak interactions.
(13) Possible involvement of AuCl as a true catalyst in AuCl3-catalyzed reactions
via an in-situ redox process was ruled out by the observed different
reactivity patterns of these complexes.10
(14) For selected examples of allene activation by Au(I) and Au(III), see: (a)
Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem.,
Int. Ed. 2000, 39, 2285. (b) Gockel, B.; Krause, N. Org. Lett. 2006, 8,
4485. (c) Morita, N.; Krause, N. Eur. J. Org. Chem. 2006, 4634. (d) Zhou,
C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325. (e) Zhang, L.
J. Am. Chem. Soc. 2005, 127, 16804. (f) Morita, N.; Krause, N. Angew.
Chem., Int. Ed. 2006, 45, 1897. (g) Hoffmann-Ro¨der, A.; Krause, N. Org.
Lett. 2001, 3, 2537. (h) Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.
(i) Kang, J.-E.; Lee, E.-S.; Park, S. I.; Shin, S. Tetrahedron Lett. 2005, 46,
7431. (j) Luzung, M. R.; Mauleon, P.; Toste, F. D. J. Am. Chem. Soc.
2007, 129, 12402. (k) Huang, X.; Zhang, L. Org. Lett. 2007, 9, 4627. (l)
Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195.
(15) For examples of alkyne activation by gold proceeding via allenyl intermedi-
ates, see ref 2b and (a) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed.
2007, 46, 2750. (b) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128,
1442. (c) Wang, S.; Zhang, L. Org. Lett. 2006, 8, 4585. (d) Wang, S.;
Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414. (e) Buzas, A.; Istrate, F.;
Gagosz, F. Org. Lett. 2006, 8, 1957. (f) Buzas, A.; Gagosz, F. J. Am. Chem.
Soc. 2006, 128, 12614.
-
free energy of only 9.6 kcal/mol , whereas those for BF4- and SbF6
are much higher (20.2 and 29 kcal/mol, respectively), which is in a
good agreement with the experiments.
In summary, the mechanism of Au-catalyzed cycloisomerization
of bromoallenyl ketones has been investigated through DFT compu-
tational and experimental studies. It was found that both Au(I) and
Au(III) catalysts13 activate the distal double bond of the allene to
produce cyclic zwitterionic intermediates, which undergo a kinetically
favored 1,2-Br migration. However, in the cases of Au(PR3)L (L )
Cl, OTf) catalysts, the counterion-assisted H-shift is the major process,
indicating that the regioselectivity of the Au-catalyzed 1,2-H vs 1,2-
Br migration is ligand dependent. The present study may provide better
understanding of the reactions of allenes and alkynes activated by Au(I)
(16) (a) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 9708. (b) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.;
Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066. (c) Marion, N.;
D´ıez-Gonza´lez, S.; de Fre´mont, P.; Noble, A. R.; Nolan, S. P. Angew.
Chem., Int. Ed. 2006, 45, 3647. (d) Sherry, B. D.; Toste, F. D. J. Am.
Chem. Soc. 2004, 126, 15978.
JA802144T
9
J. AM. CHEM. SOC. VOL. 130, NO. 22, 2008 6941