COMMUNICATIONS
Table 2. Biological activity (IC50) for HIV-1 RT inhibition, L1210 and
HCT116 cytotoxic activity.
1980, 33, 1098; Sandramycin: J. A. Matson, J. A. Bush, J. Antibiot.
1989, 42, 1763; J. A. Matson, K. L. Colson, G. N. Belofsky, B. B.
Bleiberg, J. Antibiot. 1993, 46, 162.
Compound
HIV-1 RT[a]
L1210[b]
HCT116[c]
[4] E. Arnold, J. Clardy, J. Am. Chem. Soc. 1981, 103, 1243; M. Konishi, H.
Ohkuma, F. Sakai, T. Tsuno, H. Koshiyama, T. Naito, H. Kawaguchi, J.
Am. Chem. Soc. 1981, 103, 1241.
[5] Luzopeptins A ± C: D. L. Boger, M. W. Ledeboer, M. Kume, J. Am.
Chem. Soc. 1999, 121, 1098; Sandramycin: D. L. Boger, J.-H. Chen, J.
Am. Chem. Soc. 1993, 115, 11624; D. L. Boger, J.-H. Chen, K. W.
Saionz, J. Am. Chem. Soc. 1996, 118, 1629.
[mm]
[nm]
[nm]
1
2
3
4
0.6
0.9
0.3
6
0.3
2
> 100
0.008
30
1
7
> 100
0.3
30
5
3
[6] D. L. Boger, G. Schüle, J. Org. Chem. 1998, 63, 6421.
6
11
13
14
0.4
0.7
0.9
0.8
2
> 100
> 100
6
> 100
n.d.[d]
[7] EDCI 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochlor-
ide, HOBt 1-hydroxybenzotriazole, SES 2-(trimethylsilyl)ethyl-
sulfonyl, TBS tert-butyldimethylsilyl.
2
> 100
7
[8] B. A. Dumaitre, N. Dodic, A. C. M. Daugan, P. M. C. Pianetti (Glaxo
S.A.), WO-A 9401408, 1994 [Chem. Abstr. 1995, 122, 31342e].
[9] I. Arai, A. Mori, H. Yamamoto, J. Am. Chem. Soc. 1985, 107, 8254; A.
Mori, I. Arai, H. Yamamoto, Tetrahedron 1986, 42, 6447. The acid
chlorides were prepared from the corresponding carboxylic acids
(0.9 equiv (COCl)2, cat. DMF, CH2Cl2, 08C for 10 ± 15 min, 258C for
1 ± 2 h) and used directly. For the carboxylic acid precursor to (1R,2R)-
Sandramycin
0.001
0.007
[a] HIV-1 reverse transcriptase inhibition. [b] L1210 mouse leukemia cyto-
toxic assay. [c] Human colon carcinoma assay. [d] n.d. not determined.
10: [a]2D3
74.4 (c 0.29, EtOH), literature value [a]D24
71.9 (c
possessing the unnatural (R,R)-2-methylcyclopropane car-
boxylic acid substituent proved to be only slightly less potent
than natural quinoxapeptin A (1) in both the HIV-1 RT and
cytotoxic assays. In addition, the quinoxapeptins displayed
activity trends analogous to those observed with the luzo-
peptins with the important exception that the RT inhibition
was more potent and the cytotoxic activity less potent
enhancing the selective RT inhibition observed with the
quinoxapeptins. The comparison of the quinoxapeptin deriv-
ative 14 with luzopeptin A (4) is instructive in this regard,
where 14 was nearly 10-fold more potent against HIV-1 RT
and 1000 times less potent in the L1210 cytotoxic assay. The
HIV-1 RT inhibition follows the trend of quinoxapeptin C >
A analogous to the luzopeptin C > B > A potency with the l-
Htp free alcohols being the most active agents in each series.
A reverse potency order was observed in the cycotoxic assays
with quinoxapeptin A ꢀ C and luzopeptin A > B ꢀ C with
the l-Htp free alcohols being inactive. Thus, the synthetic
precursor 3 (quinoxapeptin C), which has not yet been
disclosed as a natural product, exhibits the most potent
HIV-1 RT inhibition in the series and lacks a dose-limiting in
vitro cytotoxic activity making it the most attractive member
of the series examined to date.
1.00, EtOH). For the carboxylic acid precursor to (1S,2S)-10: [a]D23
75.6 (c 0.25, EtOH). The 13C NMR of 1 and 2 proved diagnostic of
a trans versus cis 2-methylcyclopropane carboxylic acid ester (d 18
versus d 12 for CH3) limiting the possibilities to (1R,2R)-10 or
(1S,2S)-10.
[10] D. L. Boger, J.-H. Chen, K. W. Saionz, Q. Jin, Bioorg. Med. Chem.
1998, 6, 85; D. L. Boger, K. W. Saionz, Bioorg. Med. Chem. 1999, 7,
315.
[11] D. L. Boger, J.-H. Chen, Bioorg. Med. Chem. Lett. 1997, 7, 919.
Rhodium(I)-Catalyzed [222]
Cycloadditions with N-Functionalized
1-Alkynylamides: A Conceptually New
Strategy for the Regiospecific Synthesis of
Substituted Indolines**
Bernhard Witulski* and Thomas Stengel
Received: March 12, 1999 [Z13157IE]
German version: Angew. Chem. 1999, 111, 2533 ± 2536
Stereoselective syntheses of multifunctionalized indoles
and indolines (2,3-dihydroindoles) are a continuous challenge
because of the enormous relevance of this class of compounds
in the fields of natural products, pharmaceuticals, and drug-
related targets.[1] Substructures of highly functionalized in-
doles are found in numerous natural products and pharma-
ceutically active compounds, for instance in the ergot
alkaloids,[2] the telocidines,[3] the diazonamides[4] as well as
in N-methylwelwitindolinone C,[5] an indolinone alkaloid that
Keywords: antitumor agents ´ natural products ´ peptides ´
structure-activity relationships ´ total synthesis
[1] R. B. Lingham, A. H. M. Hsu, J. A. OꢁBrien, J. M. Sigmund, M.
Sanchez, M. M. Gagliardi, B. K. Heimbuch, O. Genilloud, I. Martin,
M. T. Diez, C. F. Hirsch, D. L. Zink, J. M. Liesch, G. E. Koch, S. E.
Gartner, G. M. Garrity, N. N. Tsou, G. M. Salituro, J. Antibiot. 1996,
49, 253.
[2] G. M. Garrity, O. Genilloud, A. H. M. Hsu, R. B. Lingham, B. Russell,
I. Martin, G. M. Salituro, M. Sanchez, J. M. Sigmund, N. N. Tsou
(Merck), GB-B 2294265, 1996 [Chem. Abstr. 1996, 125, 112914g].
[3] Luzopeptins A ± C: M. Konishi, H. Ohkuma, F. Sakai, T. Tsuno, H.
Koshiyama, T. Naito, H. Kawaguchi, J. Antibiot. 1981, 34, 148; H.
Ohkuma, F. Sakai, Y. Nishiyama, M. Ohbayashi, H. Imanishi, M.
Konishi, T. Miyaki, H. Koshiyama, H. Kawaguchi, J. Antibiot. 1980, 33,
1087; K. Tomita, Y. Hoshino, T. Sasahira, H. Kawaguchi, J. Antibiot.
[*] Dr. B. Witulski, Dipl.-Chem. T. Stengel
Fachbereich Chemie der Universität
Erwin-Schrödinger-Straûe, D-67663 Kaiserslautern (Germany)
Fax : ( 49)631-205-3921
[**] This work was supported by the Deutsche Forschungsgemeinschaft
(Wi 1696/1 ± 1 und 1 ± 2). We thank Prof. Dr. M. Regitz for his
generous support.
2426
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3816-2426 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1999, 38, No. 16