The Journal of Organic Chemistry
Page 12 of 13
and selective Stille cross-coupling of benzylic and allylic bromides us-
number JP16K05719, JP18K19079, JP18H01977, and
JP19K05455. Y. N. acknowledges support from the Frontier Re-
search Base for Global Young Researchers, Osaka University, of
the MEXT program, and from the Mitsui Chemicals Award in Syn-
thetic Organic Chemistry, in addition to the Shorai Foundation for
Science and Technology. We would like to thank Prof. Dr S. Mina-
kata and Prof. Dr Y. Takeda (Department of Applied Chemistry,
Osaka University, Japan) for suggestions concerning the analysis
of AIE.
ing bromobis(triphenylphosphine)(N-succinimide)palladium(II), Tet-
rahedron Lett. 2004, 45, 461-465. (i) X. Yang, P. Knochel, Preparation
and Reactions of Functionalized Organocopper Reagents, Synthesis
2006, 15, 2618-2623. (j) N. P. Yahaya, K. M. Appleby, M. Teh, C.
Wagner, E. Troschke, J. T. W. Bray, S. B. Duckett, L. A. Hammarback,
J. S. Ward, J. Milani, N. E. Pridmore, A. C. Whitwood, J. M. Lynam,
I. J. S. Fairlamb, Manganese(I)‐Catalyzed C−H Activation: The Key
1
2
3
4
5
6
7
Role of a 7‐Membered Manganacycle in H‐Transfer and Reductive
Elimination, Angew. Chem. Int. Ed. 2016, 55, 12455-12459.
8
9
(5) (a) I. E.-S. El-Kholy, F. K. Rafla, M. M. Mishrikey, Pyrone series.
Part X. Reactivity of 4,5,6-triaryl-2-pyrones and the corresponding
thio-analogues, J. Chem. Soc. C 1969, 1950-1954. (b) P. d. March, M.
Moreno-Maňas, R. Pi, I. Ripoll, F. Sánchez-Ferrando, Brominated de-
rivatives of 4‐hydroxy‐ and 4‐methoxy‐6‐methyl‐2H‐py-
ran‐2‐ones, J. Heterocyclic Chem. 1985, 22, 1537-1542. (c) T.
Shimo, M. Ohe, K. Somekawa, Preparation of 3‐(2H‐pyran‐2‐
on‐6‐yl)indolizines and the diels‐alder reactions with some ole-
finic and acetylenic dienophiles, J. Heterocyclic Chem. 1991, 28, 1831-
1833. (d) Y. Wang, D. J. Burton, A Facile, General Synthesis of 3,4-
Difluoro-6-substituted-2-pyrones, J. Org. Chem. 2006, 71, 3859-3862.
(e) A. Nakhi, Md. S. Rahman, S. Archana, R. Kishore, G. P. K. Seerapu,
K. L. Kumar, D. Haldar, M. Pal, Construction and functionalization of
pyranone ring fused with pyran moiety: Design and synthesis of novel
pyrano[4,3-b]pyran-5(4H)-ones as potential inhibitors of sirtuins,
Bioorg. Med. Chem. Lett. 2013, 23, 4195-4205. (f) E. Wei, B. Liu, S.
Lin, B. Zhao, F. Liang, Halonium-initiated double oxa-cyclization cas-
cade as a synthetic strategy for halogenated furo[3,2-c]pyran-4-ones,
Org. Biomol. Chem. 2013, 11, 7212-7217.
REFERENCES
(1) (a) T. Sunazuka, S. Ōmura, Total Synthesis of α-Pyrone Mero-
terpenoids, Novel Bioactive Microbial Metabolites, Chem. Rev. 2005,
105, 4559-4580. (b) A. Goel, V. J. Ram, Natural and synthetic 2H-py-
ran-2-ones and their versatility in organic synthesis, Tetrahedron 2009,
65, 7865-7913. (c) J. S. Lee, Recent Advances in the Synthesis of 2-
Pyrones, Mar. Drugs 2015, 13, 1581-1620. (d) Y. Hoshino, Y. Ikeda,
Y. Nakai, K. Honda, Facile Synthesis of Silylated 4,5-Disubstituted
Phthalates via Inverse Electron-demand Cycloaddition of 2-Pyrone-
4,5-dicarboxylate with Silylacetylenes, Chem. Lett. 2017, 46, 1743-
1746. (e) E. M. C. Chaves, J. E. R. Honório-Júnior, C. N. S. Sousa, V.
S. Monteiro, D. T. T. Nonato, L. P. Dantas, A. S. S. C. Lúcio, J. M.
Barbosa-Filho, M. C. A. Patrocínio, G. S. B. Viana, S. M. M. Vascon-
celos, Metab. The anxiolytic-like effect of 6-styryl-2-pyrone in mice
involves GABAergic mechanism of action, Brain Dis. 2018, 33, 139-
149.
(2) For selective examples, see.: (a) R. Manikandan, M. Jeganmohan,
Ruthe-nium-Catalyzed Dimerization of Propiolates: A Simple Route to
α-Pyrones, Org. Lett. 2014, 16, 652-655. (b) S.-Q. Qiu, T. Ahmad, Y.-
H. Xu, T.-P. Loh, Palladium-Catalyzed Cascade Intramolecular Cy-
clization and Allylation of Enynoates with Allylic Alcohols, J. Org.
Chem. 2019, 84, 6729. (c) J. Preindl, S. Schulthoff, C. Wirtz, J. Lingnau,
A. Fürstner, Polyunsaturated C-Glycosidic 4-Hydroxy-2-pyrone De-
rivatives: Total Synthesis Shows that Putative Orevactaene Is Likely
Identical with Epipyrone A, Angew. Chem. Int. Ed., 2017, 56, 7525-
7530. (d) C. -X. Zhou, A. Fürstner, Catalysis-Based Total Synthesis of
Pateamine A and DMDA-Pat A, J. Am. Chem. Soc., 2018, 140, 10514-
10523. (e) A. Fürstner, Gold Catalysis for Heterocyclic Chemistry: A
Representative Case Study on Pyrone Natural Products, Angew. Chem.
Int. Ed., 2018, 57, 4215-4233. and references cited therein.
(3) (a) R. C. Larock, M. J. Doty, X. Han, Synthesis of Isocoumarins
and α-Pyrones via Palladium-Catalyzed Annulation of Internal Al-
kynes, J. Org. Chem. 1999, 64, 8770-8779. (b) S. Mochida, K. Hirano,
T. Satoh, M. Miura, Synthesis of Functionalized α-Pyrone and Bu-
tenolide Derivatives by Rhodium-Catalyzed Oxidative Coupling of
Substituted Acrylic Acids with Alkynes and Alkenes, J. Org. Chem.
2009, 74, 6295-6298. (c) T. Fukuyama, Y. Higashibeppu, R. Yamaura,
I. Ryu, Ru-Catalyzed Intermolecular [3+2+1] Cycloaddition of α,β-Un-
saturated Ketones with Silylacetylenes and Carbon Monoxide Leading
to α-Pyrones, Org. Lett. 2007, 9, 587-589. (d) T. Yao, R. C. Larock,
Synthesis of Isocoumarins and α-Pyrones via Electrophilic Cyclization,
J. Org. Chem. 2003, 68, 5936-5942.
(4) (a) K. Hauge, The Cyclization of Some cis-Alkenynoic Acids to
alpha-Pyrones. I., Acta Chem. Scand. 1969, 23, 1059-1061. (b) T. A.
Carpenter, P. J. Jenner, F. J. Leeper, J. Staunton, A novel kinetic depro-
tonation at a vinylic carbon in a pyrone ring, J. Chem. Soc., Chem.
Commun., 1980, 1227. (c) G. H. Posner, W. Harrison, D. G. Wettlaufer,
3-Cuprio-2-pyrone: an extraordinary organocopper reagent, J. Org.
Chem. 1985, 50, 5041-5044. (d) Z. Liu, J. Meinwald, 5-(Trime-
thylstannyl)-2H-pyran-2-one and 3-(Trimethylstannyl)-2H-pyran-2-
one:ꢀ New 2H-Pyran-2-one Synthons, J. Org. Chem. 1996, 61, 6693-
6699. (e) J. Sauer, D. K. Heldmann, K.-J. Range, M. Zabel, Stannylated
α-pyrones: Synthesis, halogenation and destannylation reactions, Tet-
rahedron 1998, 54, 12807-12822. (f) H. Hagiwara, K. Kobayashi, S.
Miya, T. Hoshi, T. Suzuki, M. Ando, T. Okamoto, M. Kobayashi, I.
Yamamoto, S. Ohtsubo, M. Kato, H. Uda, First Total Syntheses of the
Phytotoxins Solanapyrones D and E via the Domino Michael Protocol,
J. Org. Chem. 2002, 67, 5969-5976. (g) Q. Lin, W. K. Leong, Reaction
of Pyrones with Triosmium Clusters, Organometallics 2003, 22, 3639-
3648. (h) C. M. Crawforth, I. J. S. Fairlamb, R. J. K. Taylor, Efficient
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) Y. Kita, T. Yata, Y. Nishimoto, K. Chiba, M. Yasuda, Selective
oxymetalation of terminal alkynes via 6-endo cyclization: mechanistic
investigation and application to the efficient synthesis of 4-substituted
isocoumarins, Chem. Sci. 2018, 9, 6041-6052.
(7) Indium salts were widely used as carbophilic Lewis acid. For
selective review articles, see: (a) J. P. Sestelo, L. A Sarandeses, M. M.
Martinez, L. A. Marañón, Indium(III) as π-acid catalyst for the electro-
phili activation of carbon-carbon unsaturated systems, Org. Biomol.
Chem., 2018, 16, 5733. (b) S. I. Lee, N. Chatani, Catalytic skeletal re-
organization of enynes through electrophilic activation of alkynes: dou-
ble cleavage of C-C double and triple bonds, Chem. Commun., 2009, 4,
371-384. (c) V. Mamane, P. Hannen, A. Fürstner, Synthesis of Phenan-
threnes and Polycyclic Heteroarenes by Transition-Metal Catalyzed
Cycloisomerization Reactions, Chem. Eur. J. 2004, 10, 4556-4575.
(8) D. J. Faizi, A. Issaian, A. J. Davis, S. A. Blum, Catalyst-Free
Synthesis of Borylated Lactones from Esters via Electrophilic Oxy-
boration, J. Am. Chem. Soc. 2016, 138, 2126–2129.
(9) The bond lengths of two carbon-oxygen bonds (C1-O1 and C1-
O2) in 4b are similar with the reported cationic 2-pyrone. P. Legzdins,
W. S. McNell, E. G. Vessey, Organometallic nitrosyl chemistry. 55.
Regioselective synthesis of 2-pyrones mediated by organometallic di-
nitrosyl cations of the Group 6 metals, Organometallics 1992, 11,
2718-2723.
(10) (a) M. Kosugi, K. Sasazawa, Y. Shimizu, T. Migita, Reactions
of allyltin compounds III. Allylation of aromatic halides with al-
lyltributyltin in the presence of tetrakis(triphenylphosphine)palla-
dium(0), Chem. Lett. 1977, 301-302. (b) M. Kosugi, Y. Shimizu, T.
Migita, Alkylation, Arylation, and Vinylation of acyl chlorides by
means of organotin compounds in the presence of catalytic amounts of
tetrakis(triphenylkphosphine)palladium(0), Chem. Lett. 1977, 1423-
1424. (c) D. Milstein, J. K. Stille, A general, selective, and facile
method for ketone synthesis from acid chlorides and organotin com-
pounds catalyzed by palladium, J. Am. Chem. Soc. 1987, 100, 3636-
3638. (d) C. Cordovilla, C. Bartolome, J. ꢁ. Martínez-Ilarduya, P.
Espinet, The Stille Reaction, 38 Years Later, ACS Catal. 2015, 5, 3040-
3053.
(11) Zhao, L. Shen, Z.-L. Shen, T.-P. Loh, Transition metal-cata-
lyzed cross-coupling reactions using organoindium reagents, Chem.
Soc. Rev. 2017, 46, 586–602
(12) (a) K. Hirano, S. Minakata, M. Komatsu, Unusual Fluorescent
Properties of 3,4,6-Triphenyl-α-pyrones, Chem. Lett. 2001, 30, 8-9. (b)
ACS Paragon Plus Environment