Selective Inhibitors of Pancreatic Cholesterol Esterase
J ournal of Medicinal Chemistry, 1999, Vol. 42, No. 20 4255
(4) Bailey, J . M.; Gallo, L. L.; Gillespie, J . Inhibition of Dietary
Cholesterol Ester Absorption by 3-BCP, a Suicide Inhibitor of
Cholesterol-esterase. Biochem. Soc. Trans. 1995, 23, 408S.
(5) Westkaemper, R. B.; Abeles, R. H. Inactivators of Serine
Proteases Based on 6-Chloro-2-pyrone. Biochemistry 1983, 22,
3256-3264.
(6) Kudchodkar, B. J .; Horlick, L.; Sodhi, H. S. Effects of Plant
Sterols on Cholesterol Metabolism in Man. Atherosclerosis 1976,
28, 239-248.
(7) Becker, M.; Staab, D.; von Bergmann, K. Treatment of Severe
Familial Hypercholesterolemia in Childhood with Sitosterol and
Sitostanol. J . Pediatr. 1993, 122, 292-296.
(8) Miettinen, T. A.; Puska, P.; Gylling, H.; Vanhanen, H.; Vartiain-
en, E. Reduction of Serum Cholesterol with Sitostanol-ester
(m, 52H), 4.20 (t, 1H), 4.65 (m, 1H), 5.37 (br d, 1H). Anal.
(C33H55ClO2) C, H.
Ch olester yl 2-Ch lor op r op ion a te (10b). Cholesterol (1.00
g, 2.60 mmol), triethylamine (0.73 mL, 5.20 mmol), and
2-chloropropionyl chloride (0.36 mL, 2.90 mmol) were combined
in methylene chloride. The same procedure as that used for
10d was followed to afford 0.99 g (80%) of 10b as white
needles: mp 123-125 °C; IR 1740 (carbonyl) cm-1; 1H NMR δ
0.65-2.38 (m, 46H), 4.33 (q, 1H), 4.64 (m, 1H) 5.36 (br d, 1H).
Anal. (C30H49ClO2) C, H.
Ch olester yl 2-Ch lor oa ceta te (10a ). Cholesterol (2.00 g,
5.20 mmol), triethylamine (1.45 mL, 10.4 mmol), and chloro-
acetyl chloride (0.64 mL, 5.70 mmol) were combined in
methylene chloride. The same procedure as that used for 10d
was followed to afford 1.92 g (80%) of 10a as a white solid:
mp 161-162 °C (lit.31 mp 160-161 °C); IR 1740 (carbonyl)
Margarine in
a Mildly Hypercholesterolemic Population. N.
Engl. J . Med. 1995, 333, 1308-1312.
(9) Weststrate, J . A.; Meijer, G. W. Plant Sterol-enriched Margarines
and Reduction of Plasma Total- and LDL-cholesterol Concentra-
tions in Normocholesterolaemic and Mildly Hypercholestero-
laemic Subjects. Eur. J . Clin. Nutr. 1998, 52, 334-343.
(10) Sedaghat, A.; Samuel, P.; Crouse, J . R.; Ahrens, E. H., J r. Effects
of Neomycin on Absorption, Synthesis, and/or Flux of Cholesterol
in Man. J . Clin. Invest. 1975, 55, 12-21.
cm-1 1H NMR δ 0.65-2.48 (m, 43H), 4.02 (s, 2H), 4.68 (m,
;
1H), 5.37 (br d, 1H). Anal. (C29H47ClO2) C, H.
Ch olester yl 2-Br om op a lm ita te (10g). Cholesterol (2.00
g, 5.20 mmol), triethylamine (1.45 mL, 10.4 mmol), and
2-bromopalmitoyl chloride (2.00 mL, 5.70 mmol) were com-
bined in methylene chloride. The same procedure as that used
for 10d was followed to afford 3.10 g (85%) of 10g as a white
solid: mp 50-52 °C; IR 1740 (carbonyl) cm-1; 1H NMR δ 0.65-
2.38 (72H), 4.15 (t, 1H), 4.64 (m, 1H), 5.37 (br d, 1H). Anal.
(C43H75BrO2) C, H.
(11) Hauser, H,; Dyer, J . H.; Nandy, A.; Vega, M. A.; Werder, M.;
Bieliauskaite, E.; Weber, F. E.; Compassi, S.; Gemperli, A.;
Boffelli, D.; Wehrli, E.; Schulthess, G.; Phillips, M. C. Identifica-
tion of a Receptor Mediating Absorption of Dietary Cholesterol
in the Intestine. Biochemistry 1998, 37, 17843-17850.
(12) Wang, C.-S.; Hartsuck, J . A. Bile Salt-activated Lipase:
A
Multiple Function Lipolytic Enzyme. Biochim. Biophys. Acta
1993, 1166, 1-19.
(13) Myers-Payne, S. C.; Hui, D. Y.; Brockman, H. L.; Schroeder, F.
Cholesterol Esterase: A Cholesterol Transfer Protein. Biochem-
istry 1995, 34, 3942-3947.
(14) Spilburg, C. A.; Cox, D. G.; Wang, X.; Bernat, B. A.; Bosner, M.
S.; Lange, L. G. Identification of a Species Specific Regulatory
Site in Human Pancreatic Cholesterol Esterase. Biochemistry
1995, 34, 15532-15538.
(15) Mackay, K.; Starr, J . R.; Lawn, R. M.; Ellsworth, J . L. Phos-
phatidylcholine Hydrolysis Is Required for Pancreatic Choles-
terol Esterase- and Phospholipase A2-facilitated Cholesterol
Uptake into Intestinal Caco-2 Cells. J . Biol. Chem. 1997, 272,
13380-13389.
(16) Harper, J . W.; Hemmi, K.; Powers, J . C. New Mechanism-Based
Serine Protease Inhibitors: Inhibition of Human Leukocyte
Elastase, Porcine Pancreatic Elastase, Human Leukocyte Cathe-
psin G, and Chymotrypsin by 3-Chloroisocoumarin and 3,3-
Dichlorophthalide. J . Am. Chem. Soc. 1983, 105, 6518-6520.
(17) Ringe, D.; Mottonen, J . M.; Gelb, M. H.; Abeles, R. H. X-ray
Diffraction Analysis of the Inactivation of Chymotrypsin by
3-Benzyl-6-chloro-2-pyrone. Biochemistry 1986, 25, 5633-5638.
(18) Boulanger, W. A.; Katzenellenbogen, J . A. Structure-Activity
Study of 6-Substituted 2-Pyranones as Inactivators of R-Chy-
motrypsin. J . Med. Chem. 1986, 29, 1159-1163.
(19) Feaster, S. R.; Quinn, D. M. Mechanism-Based Inhibitors of
Mammalian Cholesterol Esterase. Methods Enzymol. 1997, 286,
231-252.
(20) Feaster, S. R.; Lee, K.; Baker, N.; Hui, D. Y.; Quinn, D. M.
Molecular Recognition by Cholesterol Esterase of Active Site
Ligands: Structure-Reactivity Effects for Inhibition by Aryl
Carbamates and Subsequent Carbamylenzyme Turnover. Bio-
chemistry 1996, 35, 16723-16734.
Ch olester yl 2-Br om oh exa n oa te (10f). Cholesterol (2.00
g, 5.20 mmol), triethylamine (1.45 mL, 10.4 mmol), and
2-bromohexanoyl bromide (1.47 mL, 5.7 mmol) were combined
in methylene chloride. The same procedure as that used for
10d was followed to afford 2.50 g (85%) of 10f as white
1
needles: mp 60-62 °C; IR 1740 (carbonyl) cm-1; H NMR δ
0.65-2.38 (m, 52H), 4.15 (t, 1H), 4.62 (m, 1H), 5.37 (br d, 1H).
Anal. (C33H55BrO2) C, H.
Ch olester yl 2-Br om op r op ion a te (10e). Cholesterol (2.00
g, 5.20 mmol), triethylamine (1.45 mL, 10.4 mmol), and
2-bromopropionyl bromide (1.23 mL, 5.7 mmol) were combined
in methylene chloride. The same procedure as that used for
10d was followed to afford 1.97 g (100%) of 10e as white
needles: mp 123-124 °C; IR 1740 (carbonyl) cm-1; 1H NMR δ
0.66-2.40 (m, 46H), 4.33 (q, 1H), 4.65 (m, 1H) 5.36 (br d, 1H).
Anal. (C30H49BrO2) C, H.
En zym e Assa ys a n d Kin etics. CEase (porcine), chymot-
rypsin (bovine), and trypsin (porcine) were from Sigma. CEase
was assayed in 0.1 M Hepes, pH 7, containing 6 mM tauro-
cholate and 1 mM p-nitrophenylbutyrate, at 405 nm. Inhibitors
of CEase were generally analyzed by double reciprocal and
Dixon plots and, for high-affinity inhibitors such as 2c, by
Straus-Goldstein plots. Kinetic analysis of Michaelis constants
and kcat values was carried out by nonlinear regression
analysis with the Enzfitter program. Dissociation constants
of inhibitors were determined by linear regression analysis of
the double reciprocal, Dixon, and Straus-Goldstein plots.
Chymotrypsin was assayed using the same substrate and
buffer as for CEase. Trypsin was assayed in 0.05 M Tris, pH
7.4, with 0.4 mM p-nitrophenyl-p′-guanidino benzoate at 405
nm.
(21) Feaster, S. R.; Quinn, D. M.; Barnett, B. L. Molecular Modeling
of the Structures of Human and Rat Pancreatic Cholesterol
Esterases. Protein Science 1997, 6, 73-79.
(22) Wang, X.; Wang, C. S.; Tang, J .; Dyda, F.; Zhang, X. C. The
Crystal Structure of Bovine Bile Salt Activated Lipase: Insights
into the Bile Salt Activation Mechanism. Structure 1997, 5,
1209-1218.
(23) Chen, J . C. H.; Miercke, L. J . W.; Krucinski, J .; Starr, J . R.;
Saenz, G.; Wang, X.; Spilburg, C. A.; Lange, L. G.; Ellsworth, J .
L.; Stroud, R. M. Structure of Bovine Pancreatic Cholesterol
Esterase at 1.6 A: Novel Structural Features Involved in Lipase
Activation. Biochemistry 1998, 37, 5107-5117.
Ack n ow led gm en t. This work was supported by a
grant from the American Heart Association (SW Affili-
ate), by Grant GM52576 from the Minority Biomedical
Sciences Support (MBRS) program, NIH, and by the
REU program, NSF.
(24) Harpp, D. N.; Bao, L. Q.; Black, C. J .; Gleason, J . G.; Smith, R.
A. An Efficient a Halogenation of Acyl Chlorides by N-Bromo-
succinamide, N-Chlorosuccinamide and Molecular Iodine. J . Org.
Chem. 1975, 40, 3420-3427.
(25) Kurtz, A. N.; Billips, W. E.; Greenlee, R. B.; Hamil, H. F.; Pace,
W. T. The Configuration of Chloroacrylic Acids. J . Org. Chem.
1965, 30, 3141-3146.
(26) House, H. O.; Roelofs, W. L.; Trost, B. M. The Chemistry of
Carbanions. XI. Michael Reactions with 2-Methylcyclopentanone
and 2-Methylcyclohexanone. J . Org. Chem. 1966, 31, 646-655.
(27) Hiers, G. S.; Adams, R. Omega-Cyclohexyl Derivatives of Various
Normal Aliphatic Acids. IV. J . Am. Chem. Soc. 1926, 48, 2385-
2393.
Refer en ces
(1) Hui, D. Y. Molecular Biology of Enzymes Involved with Choles-
terol Ester Hydrolysis in Mammalian Tissues. Biochim. Biophys.
Acta 1996, 1303, 1-14.
(2) Lopez-Candales, A.; Bosner, M. S.; Spilburg, C. A.; Lange, L. G.
Cholesterol Transport Function of Pancreatic Cholesterol Es-
terase: Directed Sterol Uptake and Esterification in Enterocytes.
Biochemistry 1993, 32, 12085-12089.
(3) Howles, P. N.; Carter, C. P.; Hui, D. Y. Dietary Free and
Esterified Cholesterol Absorption in Cholesterol Esterase (Bile
Salt-stimulated Lipase) Gene-targeted Mice. J . Biol. Chem. 1996,
271, 7196-7202.