E
V. Elumalai, J. H. Hansen
Cluster
Synlett
(4) Hameed, P. S.; Raichurkar, A.; Madhavapeddi, P.; Menasinakai,
S.; Sharma, S.; Kaur, P.; Nadishaiah, R.; Panduga, V.; Reddy, J.;
Sambandamurthy, V. K.; Sriram, D. ACS Med. Chem. Lett. 2014, 5,
820.
(5) Kaur, G.; Kaur, M.; Silakari, O. Mini-Rev. Med. Chem. 2014, 14,
747.
(6) Fang, B.; Zhou, C. H. Rao X. C. Eur. J. Med. Chem. 2010, 45, 4388.
(7) Cereda, E.; Turconi, M.; Ezhaya, A.; Bellora, E.; Brambilla, A.;
Pagani, F.; Donetti, A. Eur. J. Med. Chem. 1987, 22, 527.
(8) Wang, J.-L.; Zhang, J.; Zhou, Z.-M.; Li, Z.-H.; Xue, W.-Z.; Xu, D.;
Hao, L.-P.; Han, X.-F.; Fei, F.; Liu, T.; Liang, A.-H. Eur. J. Med.
Chem. 2012, 49, 183.
H–A
O
H
H
H
A
H
H
H
N
NH2
NH2
N
H
OH
O
H
NH2
NH2
B
– H2O
H–A
N
H
N
N
air [O]
H
(9) (a) Smith, J. G.; Ho, I. Tetrahedron Lett. 1971, 38, 3541.
(b) Weidenhagen, R. Chem. Ber. 1936, 69, 2263. (c) Nagawade, R.
R.; Shinde, D. B. Russ. J. Org. Chem. 2006, 42, 453. (d) Stevens, F.
F. Bower J. D. J. Chem. Soc. 1949, 2971. (e) Curini, M.; Epifano, F.;
Montanari, F.; Rosati, O.; Taccone, S. Synlett 2004, 1832.
(10) (a) Czarny, A.; Wilson, W. D.; Boykin, D. W. J. Heterocycl. Chem.
1996, 33, 1393. (b) Tidwell, R. R.; Geratz, J. D.; Dann, O.; Volz, G.;
Zeh, D.; Loewe, H. J. Med. Chem. 1978, 21, 613. (c) Fairley, T. A.;
Tidwell, R. R.; Donkor, I.; Naimann, N. A.; Ohemeng, K. A.;
Lombardy, R. J.; Bentley, J. A.; Cory, M. J. Med. Chem. 1993, 36,
1746. (d) Wang, Z.; Song, T.; Yang, Y. Synlett 2019, 30, 319.
(11) (a) Grimmett, M. R. Comprehensive Heterocyclic Chemsitry;
Katritzky, A. R.; Rees, C. W., Ed.; Pergamon: Oxford, 1984, 457.
(b) Wright, J. B. Chem. Rev. 1951, 48, 401. (c) Middleton, R. W.;
Wibberley, D. G. J. Heterocycl. Chem. 1980, 17, 1757. (d) Hisano,
T.; Ichikawa, M.; Tsumoto, K.; Tasaki, M. Chem. Pharm. Bull.
1982, 30, 2996.
N
H
N
H
NH2
E
D
C
Scheme 5 A likely reaction mechanism with general acid catalysis
conditions is remarkable and this should become a method
of choice for de novo synthesis of a range of benzimidazoles.
Funding Information
The authors gratefully acknowledge funding for this work by the Re-
search Council of Norway (Grant no. 275043 CasCat).
N
orges
F
orsk
n
i
n
gsrå
d
(2
7
5
0
4
3)
Acknowledgment
(12) For selected examples, see: (a) Kasprzak, A.; Bystrzejewski, M.;
Poplawska, M. Dalton Trans. 2018, 47, 6314. (b) Singh, M. P.;
Sasmal, S.; Lu, W.; Chatterjee, M. N. Synthesis 2000, 1380.
(c) Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M. Org.
Lett. 2003, 5, 3713. (d) Trivedi, R.; De, S. K.; Gibbs, R. A. J. Mol.
Catal. A: Chem. 2006, 245, 8.
The advanced N-Boc piperazinyl-substituted diamine 1t was prepared
and generously provided by Mr. Eirik A. L. Rustad.
Supporting Information
(13) (a) Alibeik, M. A.; Moosavifard, M. Synth. Commun. 2009, 39,
2339. (b) Jacob, R. G.; Dutra, L. G.; Radatz, C. S. Tetrahedron Lett.
2009, 50, 1495. (c) Khan, A. T.; Parvin, T.; Choudhury, L. H.
Synth. Commun. 2009, 39, 2339. (d) Narsaiah, V.; Reddy, A. R.;
Yadav, J. S. Synth. Commun. 2011, 41, 262.
Supporting information for this article is available online at
cedures, characterization data, and NMR spectra.
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
(14) (a) Park, S.; Jung, J.; Cho, E. J. Eur. J. Org. Chem. 2014, 4148. (b) Li,
Z.; Song, H.; Guo, R.; Hou, C.; Sun, S.; He, X.; Sun, Z.; Chu, W.
Green Chem. 2019, 21, 3602.
(15) (a) Chebolu, R.; Kommi, D. N.; Kumar, D.; Bollineni, N.;
Chakraborti, A. K. J. Org. Chem. 2012, 77, 10158. (b) Mahire, V.
N.; Mahulikar, P. P. Chin. Chem. Lett. 2015, 983. (c) Senapak, W.;
Saeeng, R.; Jaratjaroonphong, J.; Promarak, V.; Sirion, U. Tetrahe-
dron 2019, 75, 3543.
References and Notes
(1) (a) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem.
Biol. 2010, 14, 347. (b) Bansal, Y.; Silakari, O. Bioorg. Med. Chem.
2012, 20, 6208. (c) Fang, X.-J.; Jeyakkumar, P.; Avula, S. R.; Zhou,
Q.; Zhou, C.-H. Bioorg. Med. Chem. Lett. 2016, 26, 2584.
(d) Kamal, A.; Narasimha Rao, M. P.; Swapna, P.; Srinivasulu, V.;
Bagul, C.; Shaik, A. B.; Mullagiri, K.; Kovvuri, J.; Reddy, V. S.;
Vidyasagar, K.; Nagesh, N. Org. Biomol. Chem. 2014, 12, 2370.
(2) (a) Zou, R.; Ayres, K. R.; Drach, J. C.; Townsend, L. B. J. Med. Chem.
1996, 39, 3477. (b) Li, Y.-F.; Wang, G.-F.; He, P.-L.; Huang, W.-G.;
Zhu, F.-H.; Gao, H.-Y.; Tang, W.; Luo, Y.; Feng, C.-L.; Shi, L.-P.;
Ren, Y.-D.; Lu, W.; Zuo, J.-P. J. Med. Chem. 2006, 49, 4790.
(3) (a) Kamal, A.; Ponnampalli, S.; Vishnuvardhan, M. V. P. S.; Rao,
M. P. N.; Mullagiri, K.; Nayak, V. L.; Chandrakant, B. MedChem-
Comm 2014, 5, 1644. (b) Saour, K.; Lafta, D. Anticancer Agents
Med. Chem. 2016, 16, 891. (c) Kim, M. K.; Shin, H.; Park, K.-s.;
Kim, H.; Park, J.; Kim, K.; Nam, J.; Choo, H.; Chong, Y. J. Med.
Chem. 2015, 58, 7596.
(16) 2-([1,1'-Biphenyl]-4-yl)-1H-benzo[d]imidazole (3g); Typical
Procedure
In a 25 mL round-bottomed flask, diamine 1g (100 mg, 0.93
mmol) was dissolved in MeOH (5 mL). To the stirred solution
was added aldehyde 2g (169 mg, 0.925 mmol) and it was stirred
for 1 min at rt. Then, the reaction was quenched with water (10
mL), diluted with EtOAc (50 mL), and washed with water (30
mL). The water layer was extracted with EtOAc (2 × 30 mL). The
organic layers were combined and dried with anhydrous
Na2SO4. The drying agent was removed by filtration and the
solvent was evaporated under reduced pressure. The crude
product was further isolated by using flash chromatography
(EtOAc/n-pentane, 20:80) to obtain compound 3g as a yellow
solid. Yield: 200 mg (80%); Rf = 0.48 (EtOAc/n-pentane, 30:70).
1H NMR (400 MHz, acetone-d6): = 8.58 (s, 1 H), 7.99–7.92 (m,
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F