RSC Advances
Communication
52.6 (CH3), 51.7 (CH3), 40.4 (CH), 32.7 (CH), 25.4 (CH). HRMS (ESI ): m/z
3
P. Lysenko and I. E. Boldesku, Tetrahedron, 1987, 43,
2609–2651; (c) A.-H. Li, L.-X. Dai and V. K. Aggarwal, Chem.
Rev., 1997, 97, 2341–2372; (d) X.-L. Sun and Y. Tang, Acc. Chem.
Res., 2008, 41, 937–948; (e) X. Guo, W. Shen, J. Shao and
Q. Zhong, Synth. Commun., 2000, 3275–3279.
6 (a) S. K. Chittimalla, R. Kuppusamy, K. Thiayagarajan and
C. Bandi, Eur. J. Org. Chem., 2013, 2715–2723; (b) S.
K. Chittimalla, R. Kuppusamy and A. Chakrabarti, Synlett,
2012, 23, 1901–1906; (c) C.-C. Liao and R. K. Peddinti, Acc.
Chem. Res., 2002, 35, 856–866; (d) Y.-P. Lo, Master dissertation,
National Tsing Hua University, Taiwan, 2007.
7 MOBs were prepared from corresponding 2-methoxyphenols
following the procedure reported in, S. K. Chittimalla and C.-
C. Liao, Tetrahedron, 2003, 59, 4039–4046.
8 A. W. Johnson and R. T. Amel, J. Org. Chem., 1969, 34,
1240–1247.
9 (a) D. L. J. Clive and S. Daigneault, J. Chem. Soc., Chem.
Commun., 1989, 332–335; (b) C. C. C. Johansson, N. Bremeyer,
S. V. Ley, D. R. Owen, S. C. Smith and M. Gaunt, Angew. Chem.,
Int. Ed., 2006, 45, 6024–6028.
10 (a) A. Kowalkowska, D. Sucholbiak and A. Jonczyk, Eur. J. Org.
Chem., 2005, 925–933; (b) C. D. Papageorgiou, S. V. Ley and M.
J. Gaunt, Angew. Chem., Int. Ed., 2003, 42, 828–831; (c) S.
S. Bhattacarjee, H. Ila and H. Junjappa, Synthesis, 1982,
301–303; (d) I. Zugravescu and M. Petrovanu, N-Ylide
Chemistry, McGraw-Hill, New York, 1976.
calcd. for C15H15ClO5SNa [M + Na] 365.0226; found 365.0236.
1k: 1H NMR (300 MHZ, CDCl3): d = 5.34 (d, J = 5.7 Hz, 1H), 3.65 (s, 3H),
3.36 (s, 3H), 3.26 (s, 3H), 3.18 (t, J = 4.2 Hz, 1H), 2.53 (dd, J = 4.2, 8.1Hz, 1H)
2.38 (ddd, J = 4.2, 5.7, 8.1 Hz, 1H), 1.18 (s, 9H). 13C NMR (75 MHz, CDCl3): d
= 209.1 (C), 198.1 (C), 153.1 (C), 99.6 (CH), 96.1 (C), 55.6 (CH3), 52.7 (CH3),
51.6 (CH3), 44.1 (C), 39.6 (CH), 33.0 (CH), 25.9 (3 6 CH3), 24.9 (CH). HRMS
(ESI ): m/z calcd. for C H O Na [M + Na] 305.1365; found 305.1377.
3
15 22
5
4j: 1H NMR (300 MHZ, CDCl3): d = 7.61 (d, J = 3.9 Hz, 1H), 7.02 (d, J = 3.9
Hz, 1H), 6.89 (dd, J = 0.6, 5.1 Hz,1H), 3.53 (t, J = 4.5 Hz,1H), 3.43 (s, 3H),
3.29 (s, 3H), 2.83 (ddd, J = 0.6, 4.5, 7.8 Hz, 1H), 2.67 (ddd, J = 4.2, 5.4, 7.5
Hz, 1H). 13C NMR (75 MHz, CDCl3): d = 195.0 (C), 184.8 (C), 141.8 (C), 141.5
(C), 135.2 (CH), 132.4 (CH), 128.0 (CH), 123.8 (C), 95.6 (C), 52.7 (CH3), 51.7
(CH3), 39.0 (CH), 33.2 (CH), 28.4 (CH). HRMS (ESI ): m/z calcd. for
3
C14H12BrClO4SNa [M + Na] 412.9226; found 412.9233.
4k: 1H NMR (300 MHZ, CDCl3): d = 6.85 (dd, J = 0.6, 5.4,1H), 3.39 (s, 3H),
3.25 (s, 3H), 3.24–3.28 (m, 1H), 2.57 (ddd, J = 0.6, 4.5, 7.5 Hz, 1H), 2.45
(ddd, J = 4.5, 5.4, 7.5 Hz, 1H), 1.19 (s, 9H). 13C NMR (75 MHz, CDCl3): d =
208.5 (C), 195.5 (C), 135.6 (CH), 123.3 (C), 95.7 (C), 52.7 (CH3), 51.6 (CH3),
44.3 (C), 38.2 (CH), 33.5 (CH), 28.1 (CH), 25.8 (3 6 CH3). HRMS (ESI ): m/z
3
calcd. for C14H20O4Br [M + H] 331.0545; found 331.0558.
10b: 1H NMR (300 MHz, DMSO-d6): d =11.52 (brs, 1H), 8.13–8.15 (m, 2H),
7.69–7.72 (m, 1H), 7.57–7.60 (m, 2H), 7.45 (t, J = 4.2 Hz, 1H), 7.23 (dd, J =
0.8, 7.6 Hz, 1H), 7.14 (s, 1H), 7.05 (t, J = 8.0 Hz, 1H), 5.43 (s, 1H), 3.77 (s,
3H), 3.64 (s, 3H), 3.51–3.53 (m, 1H), 2.36 (ddd, J = 1.2, 3.6, 4.8 Hz, 1H), 2.27
(ddd, J = 0.8, 4.4, 5.2 Hz, 1H). 13C NMR (75 MHz, DMSO-d6): d = 195.9 (C),
188.9 (C), 160.2 (C), 138.1 (C), 136.4 (C), 134.8 (C), 133.7 (CH), 128.9 (2 6
CH), 128.5 (2 6 CH), 124.5 (CH), 123.5 (CH), 122.9 (CH), 122.9 (C) 114.7
(C), 112.1 (C), 111.9 (CH), 59.5 (CH3), 57.0 (CH3), 33.0 (CH), 32.9 (CH), 31.5
(CH), 30.8 (CH). MS (ESI ): m/z found C H BrNO [M + 2 + H] 468.
3
24 21
4
1
10d: H NMR (300 MHZ, CDCl3): d = 8.36 (brs, 1H), 7.96–8.02 (m, 2H),
7.57–7.66 (m, 2H), 7.46–7.55 (m, 2H), 7.36–7.43 (m, 1H), 7.18 (d, J = 2.4 Hz,
1H), 7.04 (t, J = 7.8 Hz, 1H), 4.46 (s, 1H), 3.86 (s, 3H),3.74 (s, 3H), 3.13 (dd, J
= 3.6, 4.8 Hz, 1H), 2.75 (ddd, J = 1.5, 3.6, 8.1 Hz, 1H), 2.55 (ddd, J = 1.2, 4.8,
8.1 Hz, 1H). 13C NMR (75 MHz, CDCl3): d = 195.6 (C), 190.5 (C), 159.9 (C),
137.0 (C), 135.1 (C), 134.7 (C), 133.5 (CH), 128.8 (2 6 CH), 128.3 (2 6 CH),
126.8 (C), 125.1 (CH), 122.8 (CH), 121.3 (CH), 117.8 (CH), 117.0 (C), 105.2
(C), 60.6 (CH3), 58.7 (CH3), 35.7 (CH), 34.9 (CH), 32.3 (CH), 28.2 (CH). MS
11 T. Ibata and M. Kashiuchi, Bull. Chem. Soc. Jpn., 1986, 59,
929–930.
12 B. M. Trost, J. Am. Chem. Soc., 1967, 138–142.
13 (a) H. J. Han and J. E. Hanson, Polymer Preprints, 2003, 44, 798;
(b) A. Saba, J. Chem. Res. (S), 1990, 288–289.
(ESI ): m/z found C H BrNO [M + 2 + H] 468.
3
24 21
4
14 (a) G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106,
2875–2911; (b) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105,
2873–2920; (c) G. W. Gribble, J. Chem. Soc., Perkin Trans. 1, 2000,
1045–1075.
15 S. Biswal, U. Sahoo, S. Sethy, H. K. S. Kumar and M. Banerjee,
Asian J. Pharm. Clin. Res., 2012, 5, 1–6.
16 (a) S. Anupam and S. N. Pandeya, Int. J. Curr. Pharm. Rev. Res.,
2010, 1, 1–17; (b) T. C. Barden, Top. Heterocycl. Chem., 2011, 26,
31–46.
17 (a) A. K. Chakraborti and R. Gulhane, Chem. Commun., 2003, 9,
1896–1897; (b) B. P. Bandgar, S. S. Gawande and D. B. Muley,
Green Chem. Lett. Rev., 2010, 3, 49–54.
18 In 1D NOE studies on compound 10b, saturation of Hd gave
rise to enhancement in signal intensity of both Hb and Hc;
similarly saturation of Hc gave rise to signal intensity
enhancement of Hb and Hd due to conformational arrange-
ment of the bicyclic system, making it difficult to assign the
stereochemistry of the newly formed stereocentre. However,
from the steric considerations, we presume the attack of
indoles to compound 1a occurred from less hindered face
providing compound 10.
1 (a) J. Su, H. Tang, B. A. McKittrick, H. Gu, T. Guo, G. Qian, D.
A. Burnett, J. W. Clader, W. J. Greenlee, B. E. Hawes, K. O’Neill,
B. Spar, B. Weig, T. Kowalski and S. Sorota, Bioorg. Med. Chem.
Lett., 2007, 17, 4845–4850; (b) International Publication
Number: WO 2008/046895 A1; (c) Y. Wang and A. J. Bennet,
Org. Biomol. Chem., 2007, 5, 1731–1738.
2 (a) WO/1992/013821A1; (b) US4278817(A).
3 (a) D. J. St. Jean Jr and C. Fotsch, J. Med. Chem., 2012, 55,
6002–6020; (b) H. Zhang, W. Tuckmantel, J. B. Eaton, P.
W. Yuen, L. F. Yu, K. M. Bajjuri, A. Fedolak, D. Wang,
A. Ghavami, B. Caldarone, N. E. Paterson, D. A. Lowe,
D. Brunner, R. J. Lukas and A. P. Kozikowski, J. Med. Chem.,
2012, 55, 717–724; (c) F. Gnad and O. Reiser, Chem. Rev., 2003,
103, 1603–1624.
4 (a) M. G. Banwell, M. Berak and D. C. R. Hockless, J. Chem. Soc.,
Perkin Trans. 1, 1996, 2217–2219; (b) J. A. Marshall and R.
H. Ellison, J. Am. Chem. Soc., 1976, 98, 4312–4313; (c) J.
E. McMurry and S. J. Isser, J. Am. Chem. Soc., 1972, 94,
7132–7137; (d) E. J. Kantorowski and M. J. Kurth, Tetrahedron,
2000, 56, 4317–4353.
5 (a) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1965, 87,
1353–1364; (b) Y. G. Gololobov, A. N. Nesmeyanov, V.
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 13663–13667 | 13667