Table 1 Ethylene oligomerisation resultsa
Entry
(Ligand)
Pressure C2
(bar)
Temperature Time
(uC) (min) (g/g Cr h)
Productivityh
PE C6
(wt%) (wt%)
a-C6 selectivity C8
(%) (wt%)
a-C8 selectivity C10
(%)
(wt%)
1
2b
3b
4c
5d
6e
7f
(1)
30
45
45
45
45
45
45
45
45
45
45
45
45
45
45
65
45
45
45
45
45
45
45
45
45
45
45
45
45
45
30
13
10
15
10
10
30
30
20
30
18
30
30
18
14
53 730
298 800
324 110
161 660
305 720
131 250
197 020
35 170
100 840
96 940
37 470
26 460
52 360
2.5
3.3
3.4
0.6
1.0
8.5
5.7
2.2
2.4
12.0
8.3
9.0
3.9
2.8
0.7
90.4
86.0
90.7
93.0
92.0
85.9
87.0
89.7
92.9
41.5
17.1
29.8
38.3
59.1
27.1
99.5
99.1
99.7
99.8
99.8
99.7
99.6
99.6
99.3
81.9
55.3
26.0
39.1
94.1
71.9
5.8
10.5
4.2
3.6
3.9
5.3
5.5
5.4
2.7
41.9
66.0
47.6
49.1
34.1
63.4
.99
.99
.99
.99
.99
.99
.99
.99
0.5
0.3
1.5
1.1
3.0
1.0
1.0
1.1
1.4
1.2
1.4
2.8
2.0
1.7
1.5
(1)
(2)
(2)
(2)
(2)
(2)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
8g
9
93.8
10b
11
12
13
14
15
a
98.3
98.2
94.9
95.9
.99
98.0
110 010
159 300
Standard reaction conditions unless otherwise stated: 0.033 mmol [Cr(acac)3], 2 eq. ligand, 300 eq. MAO, 100 ml toluene as solvent.
0.02 mmol [Cr(acac)3]. 0.033 mmol CrCl3(THF)3. 0.033 mmol Cr(III) 2-ethylhexanoate. 100 ml cyclohexane as solvent. 0.01 mmol
b
c
d
e
f
g
h
[Cr(acac)3], 300 eq. MMAO-3A. 1000 eq. EAO and 250 eq. TMA. Calculated according to run times. Standard run time: 30 min or time
taken to fill the reactor (10–15 min).
Kevin Blann,* Annette Bollmann, John T. Dixon, Fiona M. Hess,
Esna Killian, Hulisani Maumela, David H. Morgan, Arno Neveling,
Stephanus Otto and Matthew J. Overett
Sasol Technology (Pty) Ltd, R&D Division, 1 Klasie Havenga Road,
activity approaching 162 000 g/g Cr h. The total quantity of useful
liquid products (i.e. 1-hexene + 1-octene) was 96.6%!
We were also interested in the effect of changing the number of
ortho-substituents on the aromatic rings: all indications were that
removing steric bulk would lead to a decrease in 1-hexene
selectivity and an increase in 1-octene. The partially ortho-
substituted ligands 4–9 were thus tested. Removal of only one
ortho-methyl group caused a dramatic shift in product selectivity
(ligand 4, entry 10), with the C8 selectivity increasing to 42% and
the C6 fraction decreasing to 42%. The selectivity to 1-hexene in
the C6 fraction was concommitantly reduced to 82%. The other
major C6 components were methylcyclopentane and methylene-
cyclopentane, consistent with our observations of the tetramerisa-
tion system.8 Ligands with only two ortho-methyl substituents, the
unsymmetrical ligand 5 and its symmetrical counterpart 6, both
afforded catalysts favouring the formation of 1-octene (entries 11
and 12). Ligand 7, the ortho-ethyl substituted analogue of 6,
showed a similar tendency (entry 13). However, on exchanging the
N-methyl group for an N-isopropyl moiety (ligand 8, entry 14) a
change in selectivity back towards 1-hexene was apparent. This can
be explained by a translated increase in the steric effect of the ethyl
substituents, caused by the greater bulk of the isopropyl group.
Interestingly, the 1-hexene selectivity in the C6 fraction was also
significantly improved (entry 13 vs. entry 14). An N-isopropyl
ligand with one ortho-ethyl group (ligand 9, entry 15) gave a
C8-selective catalyst, in line with its reduced steric demand.
In conclusion we have demonstrated that, under the appropriate
conditions, pendant coordination is not a prerequisite for selective
ethylene trimerisation with diphosphinoamine-based catalyst
systems. We have further shown that steric demand plays a
crucial role in determining the C6 and C8 selectivities. These new
catalyst systems are highly active and may be modified to give
various ratios of 1-hexene to 1-octene as required without
significant by-product formation.
Sasolburg, 1947, South Africa. E-mail: blannk@sasol.com;
Fax: 27 (0)11 522 3190; Tel: 27 (0)16 960 5408
Notes and references
1 G. V. Schulz, Z. Phys. Chem. B, 1935, 30, 379; P. J. Flory, J. Am. Chem.
Soc., 1936, 58, 1877; J. Skupinska, Chem. Rev., 1991, 91, 613.
2 For a review see: J. T. Dixon, M. J. Green, F. M. Hess and
D. H. Morgan, J. Organomet. Chem., 2004, 689, 3641.
3 W. K. Reagan, T. M. Pettijohn and J. W. Freeman, US Pat., US 5 523
507, 1996 (to Phillips Petroleum Company).
4 D. S. McGuinness, P. Wasserscheid, W. Keim, J. T. Dixon,
J. J. C. Grove, C. Hu and U. Englert, Chem. Commun., 2003, 334.
5 D. S. McGuinness, P. Wasserscheid, W. Keim, D. H. Morgan,
J. T. Dixon, A. Bollmann, H. Maumela, M. Hess and U. Englert, J. Am.
Chem. Soc., 2003, 125, 5272.
6 C. Andes, S. B. Harkins, S. Murtuza, K. Oyler and A. Sen, J. Am.
Chem. Soc., 2001, 123, 7423.
7 P. J. W. Deckers, B. Hessen and J. H. Teuben, Angew. Chem., Int. Ed.,
2001, 40, 2516.
8 K. Blann, A. Bollmann, J. T. Dixon, A. Neveling, D. H. Morgan,
H. Maumela, E. Killian, F. M. Hess, S. Otto, L. Pepler, H. A. Mahomed
and M. J. Overett, Pat. Appl., WO 2004/056479, 2002 (to Sasol
Technology (Pty) Ltd); A. Bollmann, K. Blann, J. T. Dixon, F. M. Hess,
E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan,
A. Neveling, S. Otto, M. J. Overett, A. M. Z. Slawin, P. Wasserscheid
and S. Kuhlmann, J. Am. Chem. Soc., 2004, 126, 14712.
9 K. Blann, A. Bollmann, J. T. Dixon, A. Neveling, D. H. Morgan,
H. Maumela, E. Killian, F. M. Hess, S. Otto, L. Pepler, H. A. Mahomed
and M. J. Overett, Pat. Appl., WO 2004/056477, 2002 (to Sasol
Technology (Pty) Ltd).
10 A. Carter, S. A. Cohen, N. A. Cooley, A. Murphy, J. Scutt and
D. F. Wass, Chem. Commun., 2002, 858; D. F. Wass, Pat. Appl., WO
02/04119, 2002 (to BP Chemicals).
11 S. J. Dossett, A. Gillon, A. G. Orpen, J. S. Fleming, P. G. Pringle,
D. F. Wass and M. D. Jones, Chem. Commun., 2001, 699;
M. S. Balakrishna, T. K. Prakasha and S. S. Krishnamurthy,
J. Organomet. Chem., 1990, 390, 2, 203; N. A. Cooley, S. M. Green,
D. F. Wass, K. Heslop, A. G. Orpen and P. Pringle, Organometallics,
2001, 20, 4769.
The authors thank Sasol Technology (Pty) Ltd for permission to
publish this work.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 620–621 | 621