13 R. T. Boeré, V. Klassen, and G. Wolmershäuser, J. Chem. Soc., Dalton
Trans., 1998, 4147.
14 X. M. He, R. A. Bartlett, M. M. Olmstead, K. Ruhlandt-Senge, B. E.
Sturgeon and P. P. Power, Angew. Chem., Int. Ed. Engl., 1993, 32,
717.
15 B. Schiemenz and P. P. Power, Organometallics, 1996, 15, 958.
16 J. R. Su, X.-W. Li, R. C. Crittendon and G. H. Robinson, J. Am. Chem.
Soc., 1997, 119, 5471.
17 B. Twamley, C. D. Sofield, M. M. Olmstead and P. P. Power, J. Am.
Chem. Soc., 1999, 121, 3357.
nate N–Li bond [1.942(6) Å] is the shortest observed in a Li
amidinate complex and the N–C–N angle is substantially more
obtuse [126.5(3)°] than in related species.25 In contrast, the
N(tmeda)–Li bonds [2.115(6) and 2.126(6) Å] are typical.26 To
our knowledge, all reported complexes of the type (amidinate)-
Li(tmeda) display four-coordinate Li in solution and in the solid
state.23 We attribute the unusual Li coordination in our
compound to steric effects arising from the sterically bulky
amidinate ligand.
The Li salt is a useful reagent for the synthesis of metal
amidinates. For example, reaction of 1 equiv. of the Li
amidinate with YCl3(thf)3 proceeds as shown in Scheme 1, with
the colorless, crystalline product being isolated in moderate
yield from Et2O. The empirical formula, [(dimb)YCl4Li2-
(tmeda)2],20 follows straightforwardly from 1H NMR spectros-
copy and elemental analysis, and confirmation of the solid-state
structure is provided by X-ray diffraction.27,28 The six-
coordinate Y ion resides in a distorted octahedral coordination
environment with a single amidinate ligand coordinated in the
usual bidentate fashion. Examination of Y–Cl and Y–N bond
lengths (av. 2.66 and 2.32 Å, respectively) show no anomalous
values, although the N–C–N bond angle in the amidinate (ca.
111°) is nearly 5° less obtuse than in related Y com-
pounds.8,9,29231 Although mixed amidinate/cyclopentadienyl
and amidinate/cyclooctatetraenyl compounds have been pre-
viously characterized,31,32 studies involving Y compounds
having exclusively amidinate ligands as ancillary ligands have
only resulted in the formation of bis-amidinate compounds,8,9
making this the first example of a mono-amidinate yttrium
halide species.
18 D. Lee and S. J. Lippard, J. Am. Chem. Soc., 1998, 120, 12153.
19 J. R. Hagadorn, L. Que and W. B. Tolman, J. Am. Chem. Soc., 1998,
120, 13531.
20 NMR data (J/Hz): Hdimb (300 MHz) d (Z-syn) 7.180 (t, 1H, J 5), 6.967
(d, 2H, J 5), 6.864 (s, 4H), 3.439 (s, 1H), 3.420 (spt, 1H, J 6), 3.257 (spt,
1H, J 6), 2.279 (s, 12H), 2.208 (s, 6H), 0.872 (d, 6H, J 6), 0.483 (d, 6H,
J 6); (E-syn) 7.140 (t, 1H, J 5), 6.943 (d, 2H, J 5), 6.846 (s, 2H), 6.816
(s, 2H), 4.015 (spt, 1H, J 6), 3.484 (spt, 1H, J 6), 3.464 (s, 1H), 2.172 (s,
6H), 2.162 (s, 6H), 2.143 (s, 6H), 0.962 (d, 6H, J 6), 0.845 (d, 6H, J 6);
[(dimb)Li(tmeda)] (500 MHz) d 7.244 (t, 1H, J 7.5), 7.096 (d, 2H, J 7.5),
6.929 (s, 2H), 6.888 (s, 2H), 3.635 (spt, 1H, J 6), 2.978 (s, 6H), 2.798
(spt, 1H, J 6), 2.377 (s, 4H), 2.237 (s, 6H), 1.533 (s, 12H), 1.452 (s, 4H),
1.193 (d, 6H, J 6), 0.851 (d, 6H, J 6); [(dimb)YCl4Li2(tmeda)2] (500
MHz) d 7.124 (d, 2H, J 9), 7.082 (t, 1H, J 9), 7.009 (s, 4H), 3.453 (spt
d, 2H, JHH 6, JYH 2.5), 2.514 (s, 12H), 2.233 (s, 6H), 2.107 (s, 24H),
1.750 (s, 8H), 1.119 (d, 12H, J 6); [(dimb)Y{N(SiMe3)2}2] (500 MHz)
d 7.042 (t, 1H, J 7.5), 6.832 (d, 2H, J 7.5), 6.776 (s, 4H), 3.392 (spt d,
2H, JHH 6, JYH 2.5), 2.209 (s, 6H), 2.091 (s, 12H), 1.028 (d, 12H, J 6),
0.273 (s, 36H). Full characterization data are available in the
supplementary
1999/2149/).
information
21 C.-J. F. Du, H. Hart and K.-K. D. Ng, J. Org. Chem., 1986, 51, 3162.
22 J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy: A Guide
for Chemists, Oxford University Press, Oxford, 1993.
To test the robustness of the mono-amidinate moiety,
(dimb)Y, towards substitution chemistry, [(dimb)YCl4Li2-
(tmeda)2] was treated with KN(SiMe3)2 as shown in Scheme 1.
The metathesis proceeded smoothly to form [(dimb)Y{N-
(SiMe3)2}2]20 in excellent yield as colorless crystals from
pentane. The compound shows a simple 1H NMR spectrum and
the solid state structure again features a mono-amidinate
complex with the Y now four-coordinate in a distorted
tetrahedron.33 The Y–N(amidinate) bond lengths (av. 2.34 Å)
are nearly the same as those observed in the parent compound
and the N–C–N bond angle has opened slightly (113°), yet it
remains narrower than previously reported related com-
plexes.8,9,31 The Y–N(amide) bond lengths (av. 2.24 Å) are well
within the expected range.34
23 J. Barker, D. Barr, N. D. R. Barnett, W. Clegg, I. Cragg-Hine, M. G.
Davidson, R. P. Davies, S. M. Hodgson, J. A. K. Howard, M. Kilner,
C. W. Lehmann, I. Lopez-Solera, R. E. Mulvey, P. R. Raithby and R.
Snaith, J. Chem. Soc., Dalton Trans., 1997, 951.
24 Crystal data for C37H55N4Li: M = 562.81, orthorhombic, Pbca (no.
61), a = 17.7707(4), b = 19.7667(5), c = 20.3416(4) Å, V = 7145.4(2)
Å3, T = 160 K, Z = 8, m(Mo-Ka) = 0.061 mm21, 34508 reflections
measured, 7118 unique (Rint = 0.067), final R = 0.040, Rw = 0.043,
Rall = 0.056. CCDC 182/1423.
25 T. Gebauer, K. Dehnicke, H. Goesmann and D. Fenske, Z. Naturforsch.,
Teil B, 1994, 49, 1444 and references therein.
26 L. M. Engelhardt, W.-P. Leung, C. L. Raston, P. Twiss and A. H. White,
J. Chem. Soc, Dalton Trans., 1984, 321.
27 In the crystal structure, both tmeda units exhibit a degree of disorder.
The first tmeda unit, refined anisotropically, shows the usual twofold
disorder in the ethylene backbone, and only one of the two configura-
tions is shown. The region involving the second tmeda unit was found
to be occupied by either one tmeda or two Et2O units (ca. 50% each) in
the final crystallographic model and was refined isotropically. The
portion of the model with tmeda occupancy is shown here.
28 Crystal data for C44H73Cl4Li2N5OY: M = 932.69, monoclinic, P21/n
(no. 14), a = 10.9930(4), b = 16.4195(5), c = 29.0041(9) Å, b =
93.891(1)° V = 5223.2(3) Å3, T = 158 K, Z = 4, m(Mo-Ka) = 1.356
mm21, 25212 reflections measured, 9579 unique (Rint = 0.077), final R
= 0.054, Rw = 0.063, Rall = 0.137. CCDC 182/1423.
29 Q. Chen, Y. D. Chang and J. Zubieta, Inorg. Chim. Acta, 1997, 258, 257
and references therein.
30 H. Schumann, F. Erbstein, R. Weimann and J. Demtschuk,
J. Organomet. Chem., 1997, 536, 541 and references therein.
31 R. Duchateau, A. Meetsma and J. H. Teuben, Organometallics, 1996,
15, 1656.
The authors gratefully acknowledge the Department of
Defense Science and Engineering Graduate (NDSEG) Fellow-
ship Program for fellowship support (JARS), as well as Dr
Corey Liu for insightful discussions regarding the 2D NMR
data.
Notes and references
1 J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219.
2 J. R. Hagadorn and J. Arnold, Organometallics, 1998, 17, 1355.
3 G. D. Whitener, J. R. Hagadorn and J. Arnold, J. Chem. Soc., Dalton
Trans., 1999, 1249.
4 F. A. Cotton, C. A. Murillo and I. Pascual, Inorg. Chem., 1999, 38,
2182.
5 R. D. Simpson and W. J. Marshall, Organometallics, 1997, 16, 3719.
6 K. Shibayama, S. W. Seidel and B. M. Novak, Macromolecules, 1997,
30, 3159.
7 Y. L. Zhou and D. S. Richeson, Inorg. Chem., 1997, 36, 501.
8 R. Duchateau, C. T. van Wee, A. Meetsma and J. H. Teuben, J. Am.
Chem. Soc., 1993, 115, 4931.
9 R. Duchateau, C. T. van Wee, A. Meetsma, P. T. van Duijnen and J. H.
Teuben, Organometallics, 1996, 15, 2279.
10 F. T. Edelmann, Coord. Chem. Rev., 1994, 137, 403.
11 M. P. Coles, D. C. Swenson, R. F. Jordan and V. G. Young,
Organometallics, 1997, 16, 5183.
32 U. Kilimann and F. T. Edelmann, J. Organomet. Chem., 1994, 469,
C5.
33 Crystal data for C43H75N4Si4Y: M = 849.34, orthorhombic, Pbca (no.
61), a = 18.6326(6), b = 21.4487(5), c = 24.4451(7) Å, V = 9769.4(4)
Å3, T = 140 K, Z = 8, m(Mo-Ka) = 1.325 mm21, 47309 reflections
measured, 9772 unique (Rint = 0.085), final R = 0.030, Rw = 0.031,
Rall
= 0.105. CCDC 182/1423. For all structures see http://
format.
34 H. Schumann, E. C. E. Rosenthal, G. Kociok-Kohn, G. A. Molander and
J. Winterfeld, J. Organomet. Chem., 1995, 496, 233 and references
therein.
12 M. P. Coles, D. C. Swenson, R. F. Jordan and V. G. Young,
Organometallics, 1998, 17, 4042.
Communication 9/05620C
2150
Chem. Commun., 1999, 2149–2150