Synthesis of (+)-Calyculin A and (-)-Calyculin B
J. Am. Chem. Soc., Vol. 121, No. 45, 1999 10469
Not surprisingly, the calyculins have also attracted the
attention of the synthetic community, culminating in recent
notable total syntheses of the unnatural and natural antipodes
of calyculin A [i.e., (+)-1 and (-)-1, respectively] by Evans12
and Masamune,13 a formal total synthesis of (-)-calyculin A
by Shioiri exploiting an advanced Masamune intermediate,14
and a synthesis of calyculin C by Armstrong.15 A number of
synthetic approaches have also been reported.6,16
Scheme 1
Intrigued by the diverse biological activities, as well as the
interesting architectural features, in particular those of the [5.6]
spiroketal, a central theme in our phyllanthostatin and breynolide
synthetic ventures, we initiated work on the total synthesis of
both calyculin A and B.17 Elucidation of the absolute stereo-
chemistry of (-)-calyculin A after the start of this synthetic
program revealed that the natural products were enantiomeric
to our targets. Our strategy is, of course, viable for the natural
calyculins with minor modification.
Synthetic Analysis. From the outset, we envisioned an
approach (Scheme 1) which would provide both calyculins A
and B (1 and 2) from a common advanced intermediate, avoid
extensive manipulations of the light-sensitive3 C(1-9) cyano-
tetraene, and permit flexibility in fragment coupling. Accord-
ingly, disconnections at the C(2) and C(8) olefins led to
phosphonate A, possessing a latent C(3) carbonyl for penultimate
Peterson olefination to access both 1 and 2, after construction
of a C(8,9) trisubstituted olefin. Disconnection of BCDE at the
(11) Cohen, P.; Holmes, C. F. B.; Tsukitani, Y. Trends Biochem. Sci.
1990, 15, 98.
(12) Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992,
114, 9434.
(13) Tanimoto, N.; Gerritz, S. W.; Sawabe, A.; Noda, T.; Filla, S. A.;
Masamune, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 673.
(14) For a formal synthesis of (-)-1, see: Yokokawa, F.; Hamada, Y.;
Shioiri, T. J. Chem. Soc., Chem. Commun. 1996, 871.
(15) Ogawa, A. K.; Armstrong, R. W. J. Am. Chem. Soc. 1998, 120,
12435.
C(25) olefin revealed subtargets BC, envisioned to arise via
coupling of an acyl anion equivalent (e.g., B) with epoxide C,
and DE, available from oxazole D and lactam E. In this the
first of two full accounts, we present the asymmetric synthesis
of the stereochemically fully endowed C(9-25) BC fragment
corresponding to the enantiomer of the calyculins.17a,18 In the
accompanying paper we present the synthesis of fragments A,
D, and E, their union, and completion of the total syntheses of
(+)-calyculin A and (-)-calyculin B.
The C(9-25) BC subtarget, the core of the calyculins,
encompasses three stereochemical triads [i.e., C(10-13), C(15-
17), and C(21-23)] comprising 11 of the 15 stereogenic centers
and a heptasubstituted [5,6] spiroketal. From the retrosynthetic
perspective, any successful synthesis of this fragment would
require a highly stereoselective strategy, in concert with a
carefully designed orthogonal functional group protection
scheme.
(16) (a) Evans, D. A.; Gage J. R. Tetrahedron Lett. 1990, 31, 6129. (b)
Zhao, Z.; Scarlato, G. R.; Armstrong, R. W. Tetrahedron Lett. 1991, 32,
1609. (c) Hara, O.; Hamada, Y.; Shioiri, T. Synlett 1991, 283. (d) Hara,
O.; Hamada, Y.; Shioiri, T. Synlett 1991, 285. (e) Koskinen, A. M. P.;
Chen, J. Tetrahedron Lett. 1991, 32, 6977. (f) Yokokawa, F.; Hamada, Y.;
Shioiri, T. Synlett 1992, 149. (g) Yokokawa, F.; Hamada, Y.; Shioiri, T.
Synlett 1992, 151. (h) Evans, D. A.; Gage J. R. J. Org. Chem. 1992, 57,
1958. (i) Evans, D. A.; Gage J. R.; Leighton, J. L.; Kim, A. S. J. Org.
Chem. 1992, 57, 1961. (j) Evans, D. A.; Gage J. R.; Leighton, J. L. J. Org.
Chem. 1992, 57, 1964. (k) Vaccaro, H. A.; Levy, D. E.; Sawabe, A.; Jaetsch,
T.; Masamune, S. Tetrahedron Lett. 1992, 33, 1937. (l) Matsubara, J.;
Nakao, K.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1992, 33, 4187. (m)
Barrett, A. G. M.; Edmunds, J. J.; Horita, K.; Parkinson, C. J. J. Chem.
Soc., Chem. Commun. 1992, 1236. (n) Barrett, A. G. M.; Edmunds, J. J.;
Hendrix, J. A.; Horita, K.; Parkinson, C. J. J. Chem. Soc., Chem. Commun.
1992, 1238. (o) Barrett, A. G. M.; Edmunds, J. J.; Hendrix, J. A.; Malecha,
J. W.; Parkinson, C. J. J. Chem. Soc., Chem. Commun. 1992, 1240. (p)
Barrett, A. G. M.; Malecha, J. W. J. Chem Soc., Perkin Trans. 1 1994,
1901. (q) Ogawa, A. K.; DeMattei, J. A.; Scarlato, G. R.; Tellew, J. E.;
Chong, L. S.; Armstrong, R. W. J. Org. Chem. 1996, 61, 6153. (r) Pihko,
P. M.; Koskinen, A. M. P. J. Org. Chem. 1998, 63, 92.
Our strategy for BC relied on the successful attachment of
the C(9-13) dipropionate side chain to the C(14-25) spiroketal
(Scheme 1). Consistent with concurrent investigations on the
utility of dithiane-epoxide coupling reactions for the union of
complex fragments, as achieved in our syntheses of FK-506,
rapamycin and discodermolide,19 disconnection of the BC
carbon framework at C(13-14) led to spiroketal epoxide C and
an acyl anion equivalent. Although we focused first on exploit-
ing a C(13) dithiane (vide infra), the eventual successful strategy
employed a cuprate derived from vinyl bromide B.
(17) (a) Smith, A. B., III; Duan, J. J.-W.; Hull, K. G.; Salvatore, B. A.
Tetrahedron Lett. 1991, 32, 4855. (b) Smith, A. B., III; Salvatore, B. A.;
Hull, K. G.; Duan, J. J.-W. Tetrahedron Lett. 1991, 32, 4859. (c) Smith, A.
B., III; Duan, J. J.-W.; Hull, K. G.; Salvatore, B. A.; Bertounesque, E.
Abstracts of Papers, 203rd National Meeting of the American Chemical
Society, San Francisco, CA.; American Chemical Society: Washington,
DC, 1992, ORGN 216. (d) Salvatore, B. A.; Smith, A. B., III. Tetrahedron
Lett. 1994, 35, 1329. (e) Smith, A. B., III; Iwashima, M. Tetrahedron Lett.
1994, 35, 6051. (f) Iwashima, M.; Kinsho, T.; Smith, A. B., III. Tetrahedron
Lett. 1995, 36, 2199. (g) Smith, A. B., III; Friestad, G. K.; Duan, J. J.-W.;
Barbosa, J.; Hull, K. G.; Iwashima, M.; Qiu, Y.; Spoors, P. G.; Ber-
tounesque, E.; Salvatore, B. A. J. Org. Chem. 1998, 63, 7596. (h) Smith,
A. B., III; Friestad, G. K.; Duan, J. J.-W.; Barbosa, J.; Hull, K. G.; Iwashima,
M.; Qiu, Y.; Spoors, P. G.; Salvatore, B. A. Abstracts of Papers, 216th
National Meeting of the American Chemical Society, Boston, MA.;
American Chemical Society: Washington, DC, 1998, ORGN 456. (i) For
complete details and additional examples, see: Smith, A. B., III; Cho, Y.
S.; Friestad, G. K. Tetrahedron Lett. 1998, 39, 8765.
(18) Taken in part from the Ph.D dissertation of J. J.-W. Duan, University
of Pennsylvania, 1992.
(19) For related examples, see: Smith, A. B., III; Condon, S. M.;
McCauley, J. A. Acc. Chem. Res. 1998, 31, 35.