Inorganic Chemistry
Article
active catalysts for the electrochemical reduction of protons from weak
acid (HOAc). J. Chem. Soc., Dalton Trans. 2007, 1277−1283.
(31) Cheah, M. H.; Tard, C.; Borg, S. J.; Liu, X.; Ibrahim, S. K.;
Pickett, C. J.; Best, S. P. Modeling [Fe-Fe] Hydrogenase: Evidence for
Bridging Carbonyl and Distal Iron Coordination Vacancy in an
Electrocatalytically Competent Proton Reduction by an Iron Thiolate
Assembly That Operates through Fe(0)-Fe(II) Levels. J. Am. Chem.
Soc. 2007, 129, 11085−11092.
Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen
Evolution and Uptake. Angew. Chem., Int. Ed. 2011, 50, 1371−1374.
(47) Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.;
Metaye, R.; Fihri, A.; Palacin, S.; Fontecave, M. From Hydrogenases to
́ ́
Noble Metal−Free Catalytic Nanomaterials for H2 Production and
Uptake. Science 2009, 326, 1384−1387.
(48) Krawicz, A.; Yang, J.; Anzenberg, E.; Yano, J.; Sharp, I. D.;
Moore, G. F. Photofunctional Construct That Interfaces Molecular
Cobalt-Based Catalysts for H2 Production to a Visible-Light-Absorbing
Semiconductor. J. Am. Chem. Soc. 2013, 135, 11861−11868.
(49) Seo, J.; Pekarek, R. T.; Rose, M. J. Photoelectrochemical
operation of a surface-bound, nickel-phosphine H2 evolution catalyst
on p-Si(111): a molecular semiconductor|catalyst construct. Chem.
Commun. 2015, 51, 13264−13267.
(50) Rao, H.; Wang, Z.-Y.; Zheng, H.-Q.; Wang, X.-B.; Pan, C.-M.;
Fan, Y.-T.; Hou, H.-W. Photocatalytic hydrogen evolution from a
cobalt/nickel complex with dithiolene ligands under irradiation with
visible light. Catal. Sci. Technol. 2015, 5, 2332−2339.
(51) Fei, H.; Dong, J.; Arellano-Jimenez, M. J.; Ye, G.; Dong Kim, N.;
Samuel, E. L. G.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J.; Yacaman, M. J.;
Ajayan, P. M.; Chen, D.; Tour, J. M. Atomic cobalt on nitrogen-doped
graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.
(52) Bullock, R. M.; Appel, A. M.; Helm, M. L. Production of
hydrogen by electrocatalysis: making the H-H bond by combining
protons and hydrides. Chem. Commun. 2014, 50, 3125−3143.
(53) Cardenas, A. J. P.; Ginovska, B.; Kumar, N.; Hou, J.; Raugei, S.;
Helm, M. L.; Appel, A. M.; Bullock, R. M.; O’Hagan, M. Controlling
Proton Delivery through Catalyst Structural Dynamics. Angew. Chem.,
Int. Ed. 2016, 55, 13509−13513.
(54) Stolley, R. M.; Darmon, J. M.; Das, P.; Helm, M. L. Nickel Bis-
Diphosphine Complexes: Controlling the Binding and Heterolysis of
H2. Organometallics 2016, 35, 2965−2974.
(55) Reback, M. L.; Buchko, G. W.; Kier, B. L.; Ginovska-Pangovska,
B.; Xiong, Y.; Lense, S.; Hou, J.; Roberts, J. A. S.; Sorensen, C. M.;
Raugei, S.; Squier, T. C.; Shaw, W. J. Enzyme Design from the Bottom
Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer
Coordination Sphere. Chem. - Eur. J. 2014, 20, 1510−1514.
(56) Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.;
(32) Bigi, J. P.; Hanna, T. E.; Harman, W. H.; Chang, A.; Chang, C. J.
Electrocatalytic reduction of protons to hydrogen by a water-
compatible cobalt polypyridyl platform. Chem. Commun. 2010, 46,
958−960.
́ ̀
(33) Pantani, O.; Naskar, S.; Guillot, R.; Millet, P.; Anxolabehere-
Mallart, E.; Aukauloo, A. Cobalt Clathrochelate Complexes as
Hydrogen-Producing Catalysts. Angew. Chem., Int. Ed. 2008, 47,
9948−9950.
(34) McCrory, C. C. L.; Uyeda, C.; Peters, J. C. Electrocatalytic
Hydrogen Evolution in Acidic Water with Molecular Cobalt
Tetraazamacrocycles. J. Am. Chem. Soc. 2012, 134, 3164−3170.
(35) Hu, X.; Brunschwig, B. S.; Peters, J. C. Electrocatalytic
Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic
Glyoxime and Tetraimine Complexes. J. Am. Chem. Soc. 2007, 129,
8988−8998.
(36) Berben, L. A.; Peters, J. C. Hydrogen evolution by cobalt
tetraimine catalysts adsorbed on electrode surfaces. Chem. Commun.
2010, 46, 398−400.
(37) Andreiadis, E. S.; Jacques, P.-A.; Tran, P. D.; Leyris, A.;
Chavarot-Kerlidou, M.; Jousselme, B.; Matheron, M.; Pecaut, J.;
Palacin, S.; Fontecave, M.; Artero, V. Molecular engineering of a
cobalt-based electrocatalytic nanomaterial for H2 evolution under fully
aqueous conditions. Nat. Chem. 2012, 5, 48−53.
(38) Carroll, M. E.; Barton, B. E.; Gray, D. L.; Mack, A. E.;
Rauchfuss, T. B. Active-Site Models for the Nickel−Iron Hydro-
genases: Effects of Ligands on Reactivity and Catalytic Properties.
Inorg. Chem. 2011, 50, 9554−9563.
(39) Gartner, F.; Boddien, A.; Barsch, E.; Fumino, K.; Losse, S.;
̈
Junge, H.; Hollmann, D.; Bruckner, A.; Ludwig, R.; Beller, M.
̈
Photocatalytic Hydrogen Generation from Water with Iron Carbonyl
Phosphine Complexes: Improved Water Reduction Catalysts and
Mechanistic Insights. Chem. - Eur. J. 2011, 17, 6425−6436.
(40) Ott, S.; Kritikos, M.; Åkermark, B.; Sun, L. Synthesis and
Structure of a Biomimetic Model of the Iron Hydrogenase Active Site
Covalently Linked to a Ruthenium Photosensitizer. Angew. Chem., Int.
Ed. 2003, 42, 3285−3288.
́
Mikmekova, E.; Asefa, T. Cobalt-Embedded Nitrogen-Rich Carbon
Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All
pH Values. Angew. Chem. 2014, 126, 4461−4465.
(57) Chen, W.-F.; Muckerman, J. T.; Fujita, E. Recent developments
in transition metal carbides and nitrides as hydrogen evolution
electrocatalysts. Chem. Commun. 2013, 49, 8896−8909.
(58) Hou, J.; Fang, M.; Cardenas, A. J. P.; Shaw, W. J.; Helm, M. L.;
Bullock, R. M.; Roberts, J. A. S.; O’Hagan, M. Electrocatalytic H2
production with a turnover frequency > 107 s−1: the medium provides
an increase in rate but not overpotential. Energy Environ. Sci. 2014, 7,
4013−4017.
(59) Gao, M.-R.; Liang, J.-X.; Zheng, Y.-R.; Xu, Y.-F.; Jiang, J.; Gao,
Q.; Li, J.; Yu, S.-H. An efficient molybdenum disulfide/cobalt
diselenide hybrid catalyst for electrochemical hydrogen generation.
Nat. Commun. 2015, 6, 5982.
(60) Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad,
L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S.
Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen
Evolution Reaction Catalytic Activity of Porous Molybdenum
Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 138, 7965−7972.
(61) Lassalle-Kaiser, B.; Merki, D.; Vrubel, H.; Gul, S.; Yachandra, V.
K.; Hu, X.; Yano, J. Evidence from in Situ X-ray Absorption
Spectroscopy for the Involvement of Terminal Disulfide in the
Reduction of Protons by an Amorphous Molybdenum Sulfide
Electrocatalyst. J. Am. Chem. Soc. 2015, 137, 314−321.
(62) Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.;
Chang, C. J. A Molecular MoS2 Edge Site Mimic for Catalytic
Hydrogen Generation. Science 2012, 335, 698−702.
(63) Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M. Porous Cobalt-Based
Thin Film as a Bifunctional Catalyst for Hydrogen Generation and
Oxygen Generation. Adv. Mater. 2015, 27, 3175−3180.
(41) Wiedner, E. S.; Yang, J. Y.; Dougherty, W. G.; Kassel, W. S.;
Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Comparison of Cobalt
and Nickel Complexes with Sterically Demanding Cyclic Diphosphine
Ligands: Electrocatalytic H2 Production by [Co(PtBu2NPh2)-
(CH3CN)3](BF4)2. Organometallics 2010, 29, 5390−5401.
(42) Orthaber, A.; Karnahl, M.; Tschierlei, S.; Streich, D.; Stein, M.;
Ott, S. Coordination and conformational isomers in mononuclear iron
complexes with pertinence to the [FeFe] hydrogenase active site.
Dalton Trans. 2014, 43, 4537−4549.
(43) Eady, S. C.; Breault, T.; Thompson, L.; Lehnert, N. Highly
functionalizable penta-coordinate iron hydrogen production catalysts
with low overpotentials. Dalton Trans. 2016, 45, 1138−1151.
(44) Ibrahim, S. K.; Liu, X.; Tard, C.; Pickett, C. J. Electropolymeric
materials incorporating subsite structures related to iron-only
hydrogenase: active ester functionalised poly(pyrroles) for covalent
binding of {2Fe3S}-carbonyl/cyanide assemblies. Chem. Commun.
2007, 1535−1537.
(45) Chiou, T.-W.; Lu, T.-T.; Wu, Y.-H.; Yu, Y.-J.; Chu, L.-K.; Liaw,
W.-F. Development of a Dinitrosyl Iron Complex Molecular Catalyst
into a Hydrogen Evolution Cathode. Angew. Chem., Int. Ed. 2015, 54,
14824−14829.
(46) Tran, P. D.; Le Goff, A.; Heidkamp, J.; Jousselme, B.; Guillet,
N.; Palacin, S.; Dau, H.; Fontecave, M.; Artero, V. Noncovalent
Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel
M
Inorg. Chem. XXXX, XXX, XXX−XXX