708
P. B. Brondani et al. / Tetrahedron: Asymmetry 23 (2012) 703–708
4.6.3. 4,4,5,5-Tetramethyl-2-(1-phenylcyclopropyl)-1,3,2-
dioxaborolane 5c
The analysis of 5a–c was carried out on Column ChiralpakÒ
AD-H, n-heptane, flow rate: 0.25 mL/min, UV detection: 220 nm.
Retention time of 5a: tR = 20.67 and 22.09; retention time of 5b:
tR = 19.78 and 20.81; retention time of 5c: tR = 17.55 and 19.77.
Clear oil, 75%. 1H NMR (200 MHz, CDCl3): d 0.87–0.92 (m, 2H),
1.07–1.12 (m, 2H), 1.20 (s, 12H), 7.2–7.51 (m, 5H). 13C NMR
(50 MHz, CDCl3): d À4.02, 13.31, 24.57, 83.29, 125.19, 127.14,
127.93, 128.89, 144.79. LRMS (EI) m/z (%): 245 (15), 244 (M+, 90),
243 (17), 229 (16), 187 (55), 171(18), 145 (97), 144 (77), 143
(75), 129 (29), 117 (100), 116 (65), 115 (59), 105 (50), 101 (60),
Acknowledgments
We thank CNPq, CAPES and FAPESP for their financial support.
The authors also would like to thank Dayvson J. Palmeira for the
artwork of Graphical Abstract.
85 (42), 83 (44). FT-IV (film, cmÀ1
) mmax: 3081, 3059, 2978, 2932,
2867, 1685, 1391, 1318, 1145, 849, 699.
4.7. General procedure for enzymatic oxidation reactions
To a flask (2 mL, EppendorfÒ containing a solution of the start-
References
1. (a) Torres Pazmiño, D. E.; Dudek, H.; Fraaije, M. W. Curr. Opin. Chem. Biol. 2010,
14, 138–144; (b) Nolan, L. C.; O_Connor, K. E. Biotechnol. Lett. 2008, 30, 1879–
1891; (c) Van Berkel, W. J. H.; Kamerbeek, N. M.; Fraaije, M. W. J. Biotechnol.
2006, 124, 670–689.
2. (a) Colonna, S.; Gaggero, N.; Carrea, G.; Ottolina, G.; Pasta, P.; Zambianchi, F.
Tetrahedron Lett. 2002, 43, 1797–1799; (b) Branchaud, B. P.; Walsh, C. T. J. Am.
Chem. Soc. 1985, 107, 2153–2161.
ing material (1 M in DMSO, 5
7.5 (50 mM, 440 L), phosphite solution (500 mM, 20
(100 mM, 10 L), PTDH (100 M, 5 L), and enzyme (BVMO)
(100 M, 20 L). Reactions were shaken at 200 rpm and 30 °C
lL) were added Tris/HCl buffer at pH
l
lL), NADPH
l
l
l
l
l
(PAMO and M446G PAMO mutant) or 150 rpm and 25 °C (HAPMO
and CHMO) for the time established. The reactions were stopped,
extracted with EtOAc (3 Â 0.5 mL), dried over Na2SO4, and ana-
lyzed by chiral HPLC. Control experiments in the absence of an en-
zyme were performed for all substrates tested, and no reaction was
observed.
3. (a) de Gonzalo, G.; Mihovilovic, M. D.; Fraaije, M. W. Chem. Bio. Chem. 2010, 11,
2208–2231; (b) Kayser, M. M. Tetrahedron 2009, 65, 947–974; (c) Mihovilovic,
M. D. Curr. Org. Chem. 2006, 10, 1265–1287; (d) Kamerbeek, N. M.; Janssen, D.
B.; van Berkel, W. J. H.; Fraaije, M. W. Adv. Synth. Catal. 2003, 345, 667–678.
4. (a) Stewart, J. D. Curr. Org. Chem. 1998, 2, 195–216; (b) Mihovilovic, M. D.;
Müller, B.; Stanetty, P. Eur. J. Org. Chem. 2002, 22, 3711–3730.
5. Pazmiño, D. E. T.; Snajdrova, R.; Rial, D. V.; Mihovilovic, M. D.; Fraaije, M. W.
Adv. Synth. Catal. 2007, 349, 1361–1368.
6. (a) Fraaije, M. W.; Wu, J.; Heuts, D. P. H. M.; van Hellemond, E. W.; Lutje
Spelberg, J. H.; Janssen, D. B. Appl. Microbiol. Biotechnol. 2005, 66, 393–400; (b)
Malito, E.; Alfieri, A.; Fraaije, M. W.; Mattevi, A. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 13157–13162.
4.8. General procedure for chemical oxidation of boronic esters
1a–c
7. Brondani, P. B.; de Gonzalo, G.; Fraaije, M. W.; Andrade, L. H. Adv. Synth. Catal.
2011, 353, 2169–2173.
To a flask (2 mL, EppendorfÒ) containing enantiopure boronic
ester 1a–c (0.1 mmol) were added a 2 M NaOH solution (1 mmol)
and H2O2 30% (3 mmol). The reaction was shaken for 3 h at room
temperature. After this period, the reaction was extracted with
EtOAc (3 Â 0.5 mL), dried over Na2SO4, and analyzed by chiral
HPLC.
8. Morrill, C.; Funk, T. W.; Grubbs, R. H. Tetrahedron Lett. 2004, 45, 7733–7736.
9. (a) Hawkins, J. M.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794–7795; (b)
Hawkins, J. M.; Loren, S.; Nambu, M. J. Am. Chem. Soc. 1994, 116, 1657–1660.
10. Lathan, J. A.; Walsh, C. J. Chem. Soc. Chem. Commun. 1986, 7, 527–528.
11. (a) Levy, L. M.; Dehli, J. R.; Gotor, V. Tetrahedron: Asymmetry 2003, 14, 2053–
2058. and references therein cited.; (b) Liu, J.; Chen, J.; Xia, C. J. Mol. Catal. A.
Chem. 2006, 250, 232–236.
12. (a) Pietruszka, J.; Solguga, G. Eur. J. Org. Chem. 2009, 5998–6008; (b) Luithle, J. E.
A.; Pietruszka, J. J. Org. Chem. 1999, 64, 8287–8297.
4.9. Absolute configuration
13. (a) Fraaije, M. W.; Wu, J.; Heuts, D. P. H. M.; van Hellemond, E. W.; Spelberg, L. J.
H.; Janssen, D. B. Appl. Microbiol. Biotechnol. 2005, 66, 393–400; (b) Kamerbeek,
N. M.; Moonen, M. J. H.; van der Ven, J. G. M.; van Berkel, W. J. H.; Fraaije, M.
W.; Janssen, D. B. Eur. J. Biochem. 2001, 268, 2547–2557; (c) Donoghue, N. A.;
Norris, D. B.; Trudgill, P. W. Eur. J. Biochem. 1976, 63, 175–192; (d) Kamerbeek,
N. M.; Moonem, M. J. H.; van de Ven, J. G. M.; van Berkel, W. J. H.; Fraaije, M. W.;
Jassen, D. B. Eur. J. Biochem. 2001, 268, 2547–2557.
14. Dudek, H. M.; de Gonzalo, G.; Torres Pazmino, D. E.; Stepniak, P.; Wyrwicz, L. S.;
Rychlewski, L.; Fraaije, M. W. Appl. Environ. Microbiol. 2011, 77, 5730–5738.
15. (a) Paptchikhine, A.; Cheruku, P.; Engman, M.; Anderson, P. G. Chem. Commun.
2009, 5996–5998; (b) Moran, W. J.; Morken, J. P. Org. Lett. 2006, 8, 2413–2415.
16. (a) Hammond, G. B.; Calogeropou, T.; Wiemer, D. F. Tetrahedron Lett. 1986, 27,
4265–4268; (b) Calogeropou, T.; Hammond, G. B.; Wiemer, D. F. J. Org. Chem.
1987, 52, 4185–4190; (c) Lee, K.; Wiemer, D. F. Tetrahedron Lett. 1993, 34,
2433–2436; (d) Wang, X.; Zhang, L.; Xu, Y.; Krishnamurthy, D.; Varsolona, R.;
Nummy, L.; Shen, S.; Frutos, R. P.; Byrne, D.; Chung, J. C.; Farina, V.; Senanayake,
C. H. Tetrahedron Lett. 2005, 46, 273–276; (e) Takagi, J.; Takahashi, K.; Ishiyama,
T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 8001–8006; (f) Takahashi, K.;
Takagi, J.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 126–127.
The absolute configuration of chiral alcohols 2a–c was estab-
lished by comparing HPLC chromatograms with the patterns de-
scribed in the literature.20 The chiral boron compounds 1a–c
were transformed into the corresponding alcohols 2a–c (see Sec-
tion 4.8) to determine their absolute configurations. The absolute
configuration of compounds 5a–c could not be determined because
the bio-oxidations were not enantioselective.
4.10. Determination of the enantiomeric excess (ee)
The enantiomeric excesses of compounds 2a–c and 5a–c were
measured by chiral HPLC analysis. Compounds 1a–c were trans-
formed into the compounds 2a–c, and then the ee was collected
(see Section 4.8).
17. Kamiya, N.; Chikami, Y.; Ishii, Y. Synlett 1990, 675–676.
18. J. S. Reis, L. H. Andrade, Unpublished results.
The analysis of 2a was carried out on Column ChiracelÒ OD,
n-heptane/iso-propanol 95:5, flow rate: 1 mL/min, UV detection:
254 nm, retention times: tR = 5.00 min (R) and tR = 5.92 min (S).
The analysis of 2b was carried out on Column ChiracelÒ OD-H,
n-heptane/iso-propanol 97:3, flow rate: 0.8 mL/min, UV detection:
227 nm, retention times: tR = 40,54 (S) and 41,93 (R).
19. Pietruszka, J.; Witt, A. J. Chem. Soc., Perkin Trans. 1 2000, 4293–4300.
20. (a) Patti, A.; Pedotti, S.; Sanfilippo, C. Chirality 2007, 19, 344–351; (b)
Belmessieri, D.; Joannesse, C.; Woods, P. A.; MacGregor, C.; Jones, C.;
Campbell, C. D.; Johnston, C. P.; Duguet, N.; Concellón, C.; Bragg, R. A.; Smith,
A. D. Org. Biomol. Chem. 2011, 9, 559–570.
The analysis of 2c was carried out on Column ChiralpakÒ AS-H,
n-heptane/iso-propanol 98.5:1.5, flow rate: 0.5 mL/min, UV detec-
tion: 254 nm, retention time: tR = 20,11 (S) and 21,51 (R).