904
G. B. Jones et al. / Tetrahedron: Asymmetry 9 (1998) 901–905
was naturally derived parasorbic acid, requiring five steps, and effectively restricting studies to the S
enantiomer. Accordingly, 14 was coupled to 1,3-dithiane, and subjected to selective deprotection to give
15 (Scheme 3).21
Scheme 3. Application of 1 in the preparation of (S)-(−)-zearalenone synthons20
In summary, a new family of enantioselective catalysts has been prepared, and employed to optimize
synthesis of important (S)-2-pentanol derivatives 1 via catalytic enantioselective methylation of function-
alized aldehydes. The merits of the alkylation approach are clear when compared to alternative catalytic
methods involving ketone reduction.23 Catalyst 8d affords among the highest selectivity ever reported for
aldehyde methylation, making application in synthesis a viable prospect. The synthesis and biological
evaluation of analogs of 2 will be reported in due course.
Acknowledgements
We thank the Donors of the Petroleum Research Fund (Administered by the American Chemical
Society) for financial support of this work (25958-G1, 28706-AC1), Professor Robert S. Phillips and
Christian Heiss (University of Georgia) for useful discussions and a gift of SADH, and George R. Martin
and John H. Kodjak for some preliminary experiments.
References
1. Hanessian, S. Total Synthesis of Natural Products: The Chiron Approach; Pergamon: Oxford, 1983.
2. Keinan, E.; Sinha, S. C.; Sinha-Bagchi, A. J. Org. Chem. 1992, 57, 3631.
3. Available from the Aldrich Chemical Company, 1996–1997, cat. no. 23,889-9; 1 g=$60.55.
4. Jones, G. B.; Huber, R. S. Synlett 1993, 367.
5. Jones, G. B.; Chapman, B. J.; Huber, R. S.; Beaty, R. Tetrahedron: Asymmetry 1994, 5, 1199.
6. Jones, G. B.; Huber, R. S.; Chapman, B. J. Tetrahedron: Asymmetry 1997, 8, 1797.
7. Singh, V. K. Synthesis 1992, 605.
8. Jones, G. B.; Heaton, S. B. Tetrahedron Lett. 1992, 33, 1693.
9. Jones, G. B.; Heaton, S. B. Tetrahedron: Asymmetry 1993, 4, 261.
10. Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem. 1991, 55, 4264.
11. For some other examples of arene chromium tricarbonyl complexed catalysts see: Malfait, S.; Pelinski, L.; Brocard, J.
Tetrahedron: Asymmetry 1996, 7, 653; Uemura, M.; Miyake, R.; Nakayama, K.; Shiro, M.; Hayashi, Y. J. Org. Chem. 1993,
58, 1238.
12. For procedure see: Strohmeier, W.; Hellman, H. Chem. Ber. 1963, 96, 2859.
13. (a) All compounds reported gave satisfactory spectral and analytical data: 7d 13C NMR (75 MHz, CDCl3) 233.7, 155.8,
129.5, 124.1, 123.5, 120.4, 115.0, 90.3, 85.9, 72.8, 61.1, 50.5, 30.7, 20.5, 14.1, 9.8 and 0.72; following deprotection (alcohol
of 8d) 13C NMR (75 MHz, CDCl3) 234.4, 143.1, 129.8, 128.3, 127.6, 120.3, 115.7, 90.6, 89.1, 73.6, 61.1, 50.9, 30.7, 20.7,
14.3 and 10.1; (b) RX, Et3N, DMF (44–75%), Dess-Martin (90–96%); (c) RX, Et3N, DMF (80–97%).
14. Jones, G. B.; Heaton, S. B.; Chapman, B. J.; Guzel, M. Tetrahedron: Asymmetry 1997, 8, 3625.
15. Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.