to be powerful enzymatic inhibitors (such as R-methyl-
dopa, R-methyltryptophan, and R-methylaspartic acid)3
and useful synthetic building blocks1 via chemical trans-
formations. Accordingly, the development of effective
synthetic methods for chiral RRAAs is a very important
and challenging subject in organic synthesis. Historically,
a number of the enantioselective synthetic methods have
been described for chiral RRAAs,4 but only a few are
practical.5
High ly En a n tioselective Syn th esis of
r-Alk yl-a la n in es via th e Ca ta lytic
P h a se-Tr a n sfer Alk yla tion of 2-Na p h th yl
Ald im in e ter t-Bu tyl Ester by Usin g
O(9)-Allyl-N(1)-2′,3′,4′-tr iflu or oben zylh yd r o-
cin ch on id in iu m Br om id e
Sang-sup J ew,* Byeong-Seon J eong, J eong-Hee Lee,
Mi-Sook Yoo, Yeon-J u Lee, Boon-saeng Park,
Myoung Goo Kim, and Hyeung-geun Park*
On the basis of the pioneering application of the
Cinchona-derived phase-transfer catalyst6 to the enan-
tioselective synthesis of R-amino acids, the O’Donnell
group adapted 4 to develop a new synthetic method for
RRAAs via the enantioselective catalytic phase-transfer
alkylation of aldimines 1 in 1992.7 However, relatively
low enantioselectivities were observed (ca. 30-50% ee).
In 1999, the Lygo group improved the enantioselectivities
up to 87% ee by using the more efficient catalyst 5.8 More
recently, the Maruoka group developed an even better
non-Cinchona phase-transfer catalyst, derived from (S)-
binaphthol, which was successfully applied to the syn-
thesis of RRAAs.9 As a part of our program to develop
new chiral building blocks, we were interested in devel-
oping a practical enantioselective synthetic method for
the preparation of RRAAs. In this note, we describe the
efficient enantioselective synthetic method of the syn-
thesis of R-alkyl-alanine by using O(9)-allyl-N-2′,3′,4′-
trifluorobenzylhydrocinchonidinium bromide 6. Through
systematic investigations of the electronic effect in the
phase-transfer catalytic reaction, we recently reported
that the ortho-F on the phenyl ring in 4 plays an integral
role in enantioselectivity enhancement.10,11 In particu-
lar, O(9)-allyl-N-2′,3′,4′-trifluorobenzylhydrocinchoni-
dinium bromide 6 was successfully applied for the
synthesis of an R-amino acid and showed the highest
Research Institute of Pharmaceutical Science and College of
Pharmacy, Seoul National University, Seoul 151-742, Korea
ssjew@plaza.snu.ac.kr
Received J anuary 3, 2003
Abstr a ct: Systematic investigations to develop an efficient
enantioselective synthetic method for R-alkyl-alanine by
catalytic phase-transfer alkylation were performed. The
alkylation of 2-naphthyl aldimine tert-butyl ester, 1E, with
RbOH and O(9)-allyl-N-2′,3′,4′-trifluorobenzylhydrocinchoni-
dinium bromide, 6, at -35 °C showed the highest enanti-
oselectivities, up to 96% ee.
Chiral R,R-dialkyl-R-amino acids (RRAAs), a class of
noncoded amino acids, have been extensively studied due
to their important role in the fields of synthetic and
biological chemistry.1 Their quaternary chiral centers
contribute not only to the molecular stability but also to
the conformational preference, by inducing a preferable
helical secondary structure of the peptide backbone, when
incorporated into a peptide.2 Moreover, the biological
activities of peptides containing RRAAs can be main-
tained longer because of their resistance against enzy-
matic hydrolysis. Also, the RRAAs themselves are known
(3) (a) Sourkers, T. L. Arch. Biochem. Biophys. 1945, 51, 444. (b)
Shirlin, D.; Gerhart, F.; Hornsperger, J . M.; Harmon, M.; Wagner, I.;
J ung, M. J . Med. Chem. 1988, 31, 30. (c) Kiick, D. M.; Cook, P. F.
Biochemistry 1983, 22, 375.
* Phone: 82-2-880-7872. Fax: 82-2-872-9129.
(1) (a) Bellier, B.; McCort-Tranchenpain, I.; Ducos, B.; Danasci-
mento, S.; Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. J . Med.
Chem. 1997, 40, 3947. (b) Mossel, E.; Formaggio, F.; Crisma, M.;
Toniolo, C.; Broxterman, Q. B.; Boesten, W. H. J .; Kamphius, J .;
Quaedflieg, P. J . L. M.; Temussi, P. Tetrahedron: Asymmetry 1997, 8,
1305. (c) Dery, O.; J oisen, H.; Grassi, J .; Chassaing, G.; Couraud, J .
Y.; Lavielle, S. Biopolymers 1996, 39, 67. (d) Benedetti, E.; Gavuzzo,
E.; Santini, A.; Kent, D. R.; Zhu, Y.-F.; Zhu, Q.; Mahr, C.; Goodman,
M. J . Pept. Sci. 1995, 1, 349. (e) Toniolo, C.; Formaggio, F.; Crisma,
M.; Valle, G.; Boesten, W. H. J .; Schoemaker, H. E.; Kamphuis, J .;
Temussi, P. A.; Becker, E. L.; Pre´cigoux, G. Tetrahedron 1993, 49, 3641.
(f) Schiller, P. W.; Weltrowska, G.; Nguyen, T. M.-D.; Lemieux, C.;
Chung, N. N.; Marsden, B. J .; Wilkes, B. C. J . Med. Chem. 1991, 34,
3125.
(2) (a) Wipf, P.; Heimgartner, H. Helv. Chim. Acta 1988, 71, 258.
(b) Hodgkin, E. E.; Clark, J . D.; Miller, K. R.; Marshall, G. R.
Biopolymers 1990, 30, 533. (c) Di Blasio, B.; Pavone, V.; Lombardi, A.;
Pedone, C.; Benedetti, E. Biopolymers 1993, 33, 1037. (d) Toniolo, C.;
Crisma, M.; Formaggio, F.; Valle, G.; Cavicchioni, G.; Pre´cigoux, G.;
Aubry, A.; Kamphius, J . Biopolymers 1993, 33, 1061. (e) Toniolo, C.
J anssen Chim. Acta 1993, 11, 10. (f) Karle, I. L.; Rao, R. B.; Prasad,
S.; Kaul, R.; Balaram, P. J . Am. Chem. Soc. 1994, 116, 10355. (g)
Formaggio, F.; Pantano, M.; Crisma, M.; Bonora, G. M.; Toniolo, C.;
Kamphius, J . J . Chem. Soc., Perkin Trans. 2 1995, 1097. (h) Benedetti,
E. Biopolymers 1996, 40, 3. (i) Karle, I. L.; Kaul, R.; Rao, R. B.;
Raghothama, S.; Balaram, P. J . Am. Chem. Soc. 1997, 119, 12048.
(4) For recent reviews, see: (a) Cativiela, C.; Diazde-Villegas, M.
D. Tetrahedron: Asymmetry 1998, 9, 3517. (b) Wirth, T. Angew. Chem.,
Int. Ed. 1997, 36, 225. (c) Seebach, D.; Sting, A. R.; Hoffmann, M.
Angew. Chem., Int. Ed. 1996, 35, 2708. (d) Duthaler, R. O. Tetrahedron
1994, 50, 1539.
(5) (a) Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.;
Hayashi, T. Tetrahedron 1988, 44, 5253. (b) Ito, Y.; Sawamura, M.;
Matsuoka, M.; Matsumoto, Y.; Hayashi, T. Tetrahedron Lett. 1987, 28,
4849. (c) Belokon, Y. N.; North, M.; Kublitski, V. S.; Ikonnikov, N. S.;
Krasik, P. E.; Maleev, V. I. Tetrahedron Lett. 1999, 40, 6105. (d)
Belokon, Y. N.; Kochetkov, K. A.; Churkina, T. D.; Ikonnikov, N. S.;
Chesnokov, A. A.; Larionov, O. V.; Parmar, V. S.; Kumar, R.; Kagan,
H. B. Tetrahedron: Asymmetry 1998, 9, 851.
(6) (a) Dolling, U.-H.; Davis, P.; Grabowski, E. J . J . J . Am. Chem.
Soc. 1984, 106, 446. (b) O’Donnell, M. J .; Bennett, W. D.; Wu, S. J .
Am. Chem. Soc. 1989, 111, 2353. (c) Lygo, B.; Wainwright, P. G.
Tetrahedron Lett. 1997, 38, 8595. (d) Corey, E. J .; Xu, F.; Noe, M. C.
J . Am. Chem. Soc. 1997, 119, 12414. (e) Ooi, T.; Kaneda, M.; Maruoka,
K. J . Am. Chem. Soc. 1999, 121, 6519.
(7) O’Donnell, M. J .; Wu, S. Tetrahedron: Asymmetry 1992, 3, 591.
(8) Lygo, B.; Crosby, J .; Perterson, J . A. Tetrahedron Lett. 1999, 40,
8671.
(9) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J . Am. Chem.
Soc. 2000, 122, 5228.
(10) J ew, S.-s.; Yoo, M.-S.; J eong, B.-S.; Park, H.-g. Org. Lett. 2002,
4, 4245.
10.1021/jo034006t CCC: $25.00 © 2003 American Chemical Society
Published on Web 05/02/2003
4514
J . Org. Chem. 2003, 68, 4514-4516