Table 1 Rearangement conditions and outcomes for fluorinated dienols
more complex species can be developed from simple fluoroalk-
ene building blocks. Work to define the scope and kinetic
parameters of oxy-Cope rearrangement systems that contain
fluorinated vinylic components is in progress.
We thank the Engineering and Physical Sciences Research
Council of Great Britain for a Project Studentship (to G. D.)
under the ROPA Scheme.
Dienol
Ta/°C
tb/h
Product
Yieldc (%)
4a
4a
4c
5a
6a
6b
6c
10
10
125
150
125
150
150
155
140
150
225
8
3
46
1.75
3
9
17
168
24
7a
7a
7c
8a
9a
9b
9c
11
11
67
58
72
73
65
62
84
—
49
Notes and references
1 C. J. Roxburgh, Tetrahedron, 1995, 51, 9767.
2 L. A. Paquette, Tetrahedron, 1997, 53, 13971.
3 For reviews of [3,3]-rearrangements of fluorinated substrates, see: S. T.
Purrington and S. C. Weeks, J. Fluorine Chem., 1992, 56, 165; V. G.
Andreev and A. F. Kolomiets, A. F. Usp. Khim., 1993, 62, 594.
Rearrangements in the context of fluorinated building block chemistry
are discussed in: J. M. Percy, Top. Curr. Chem., 1997, 193, 131; J. M.
Percy and M. E. Prime, J. Fluorine Chem., 1999, in the press.
4 W. R. Dolbier and K. W. Palmer, J. Am. Chem. Soc., 1993, 115,
9349.
a Reactions in sealed tubes in xylene. b Time for complete consumption of
starting dienol by NMR. c Isolated yield.
5 P. E. Lindner and D. M. Lemal, J. Org. Chem., 1996, 61, 5109; P. E.
Lindner, R. A. Correa, J. Gino and D. M. Lemal, J. Am. Chem. Soc.,
1996, 118, 2556.
6 P. E. Lindner and D. M. Lemal, J. Am. Chem. Soc., 1997, 119, 3259.
7 D. Schirlin, J. M. Rondeau, B. Podlogar, C. Tardif, C. Tarnus, V.
Vandorsselaer and R. Farr, ACS Symp. Ser., 1996, 639, 169; H. L. Sham,
ACS Symp. Ser., 1996, 639, 184.
8 D. Colclough, J. B. White, W. B. Smith and Y. L. Chu, J. Org. Chem.,
1993, 58, 6303; Y. L. Chu, D. Colclough, D. Hotchkin, M. Tuazon and
J. B. White, Tetrahedron, 1997, 53, 14235.
9 E. N. Marvell and W. Whalley, Tetrahedron Lett., 1970, 509.
10 (a) J. M. Bainbridge, S. J. Brown, P. N. Ewing, R. R. Gibson and J. M.
Percy, J. Chem. Soc., Perkin Trans. 1, 1998, 2541; (b) J. A. Howarth,
W. M. Owton, J. M. Percy and M. H. Rock, Tetrahedron, 1995, 51,
10289; (c) J. Burdon, P. L. Coe, I. B. Haslock and R. L. Powell, Chem.
Commun., 1996, 49.
11 N. Y. Jing and D. M. Lemal, J. Am. Chem. Soc., 1993, 115, 8481. In a
study of a Cope rearrangement of a perfluorinated hexadiene, the
substitution of a chlorine atom for a fluorine atom was reported to exert
only a minimal effect upon rearrangement rate and outcome. Products of
biradical pathways reported by these authors were not detected in our
study.
12 Selected data for 9c: colourless rhombi, mp 94 °C; (Found: C, 59.68; H,
6.61. Calc. for C13H17F3O2: C, 59.54; H, 6.49%); dH(300 MHz, CDCl3)
5.32 (dddd, 3J 32.4, J 11.4, J 6.3, J 3.0, 1H), 4.16 (dd, 2J 11.4, J 5.5, 1H),
3.72 (t, J 3.4, 1H), 3.48 (ddt, 2J 11.4, J 13.0, J 3.1, 1H), 3.10 (dd, J 19.1,
J 10.5, 1H), 2.88 (dddd, 3J 31.6, J 10.8, 3J 5.5, J 2.9, 1H), 2.38–2.30 (m,
2H), 2.19–2.05 (m, 3H), 2.04–1.95 (m, 1H), 1.86 (dtd, J 16.8, 10.9, 5.5,
1H), 1.73 (ddt, J 19.8, 2J 14.3, J 5.5, 1H), 1.63–1.55 (m, 1H), 1.40 (d,
2J 14.3, 1H), 1.31 (q, J 14.0, 1H); dF (282 MHz, CDCl3) 2101.9 (dd, 2J
255.6, 3J 26.7, 1F), 2109.5 (dd, 2J 255.6, 3J 31.7, 1F), 2124.8 (t, 3J
31.2, 1F); 13dC (75 MHz, CDCl3) 207.5, 150.5 (ddd, 2J 260.5, 2J 38.4,
2J 27.7), 117.6 (ddd, 1J 244.7, 1J 252.1, 2J 37.9), 113.0, 83.2, 69.5, 40.9
(dd, 2J 27.1, 2J 21.5), 38.5, 29.1, 28.5, 23.1, 22.0, 20.5; nmax/cm21
1711.9; m/z (CI) 280 (M+NH4+).
NMR COSY and GOESY experiments.13 By 19F NMR, we
were able to detect only products with a single double bond
configuration, assumed trans with respect to the mutual location
of the ring bonds. Unambiguous proof of alkene configuration
was then obtained in the case of 9a when single crystals14 were
grown and subjected to analysis by X-ray diffraction (Fig. 1).
Also, the 3JH-F couplings across the alkene bond in 7c (33.7 Hz)
and 9c (32.4 Hz) were entirely consistent with this arrange-
ment.
We have therefore shown that oxy-Cope systems can be
assembled rapidly, and that fluorinated cyclodecenones and
13 J. Stonehouse, P. Adell, J. Keeler and A. J. Shaka, J. Am. Chem. Soc.,
1994, 116, 6037.
14 Crystal data for 9a: C13H17ClF2O2, M
= 278.7, triclinic, a =
8.0670(2), b = 8.3194(3), c = 10.5779(3) Å, U = 633.65(3) Å3, T =
¯
150(2) K, space group P1, Z = 2, m(Mo-Ka) 0.318 mm21, 10852
reflections measured, 2555 unique (Rint = 0.0441) which were used in
all calculations. The final wR(F2) was 0.0718 (all data). CCDC
tallographic data in .cif format.
Fig. 1 The molecular structure of 9a. The cis-ring junction and trans-ring
bonds can be seen clearly.
Communication 9/08450I
2536
Chem. Commun., 1999, 2535–2536