126
W.-M. Xue et al. / Inorganica Chimica Acta 296 (1999) 114–126
Cherry, L.J. Henderson Jr., Inorg. Chem. 23 (1984) 983. (c) P.A.
Lay, W.H.F. Sasse, Inorg. Chem. 23 (1984) 4123. (d) T.
Shimidzu, T. Iyoda, K. Izaki, J. Phys. Chem. 89 (1985) 642. (e)
Md.K. Nazeeruddin, K. Kalyansundaram, Inorg. Chem. 28
(1989) 4251. (f) K. Kalyanasundaram, Md.K. Nazeeruddin, M.
Gratzel, G. Viscardi, P. Savarino, E. Barni, Inorg. Chim. Acta
198 (1992) 831. (g) S.R.L. Fernando, M.Y. Ogawa, J. Chem.
Soc., Chem. Commun. (1996) 637. (h) S.R.L. Fernando, U.S.M.
Maharoof, K. Deshayes, T.H. Kinstle, M.Y. Ogawa, J. Am.
Chem. Soc. 118 (1996) 5783. (i) A.K. Mesmeker, L. Jacquet, J.
Nasielski, Inorg. Chem. 27 (1988) 4451. (j) B.E. Buchanan, J.G.
Vos, M. Kaneko, W.J.M. van der Putten, J.M. Kelly, R. Hage,
R.A.G. de Graaff, R. Prins, J.G. Haasnoot, J. Reedijk, J. Chem.
Soc., Dalton Trans. (1990) 2425. (k) H.A. Nieuwenhuis, J.G.
Haasnoot, R. Hage, J. Reedijk, T.L. Snoeck, D.J. Stufkensand,
J.G. Vos, Inorg. Chem. 30 (1991) 48.
pypm series. Thus, the first observed reduction is asso-
ciated with the pypn ligand and the low lying dp p*
transition is associated with transfer of an electron
from the ruthenium center to the pypn ligand. The
second reduction is shifted approximately 20 mV more
negative than found for the second reduction in the
pypm series. It has been argued that a lesser effective
nuclear charge on the metal center would have the
synergistic effect of raising the energy of the ligand p*
level through charge interaction [23].
4.6. Ground-state and excited-state pKa
In their ground states, [Ru(bpy)2(pypm)]2+ com-
plexes are very weak bases (pKaꢀ −4). But [Ru(bpy)2-
(pypn)]+ complexes are even weaker bases by
approximately two orders of magnitude. One might
expect the reverse since the pypn ligand would have
more electron density due to the presence of the nega-
tive charge and render the remote nitrogen more basic.
The reason for this anomaly may be related to the fact
that the remote nitrogen is adjacent to an electron
withdrawing group. The fact that the effect is large
favors location of the exocyclic ketone at this site.
While the ground state pKa values remain relatively
constant for each series, the excited state pKa values
show differences in behavior. First, pKa* (app) for the
pypm series increased by approximately six orders of
magnitude compared to the ground state pKa. But,
pKa* (app) of the pypn series increased even more
(approximately eight orders of magnitude). These varia-
tions are consistent with assigning the p* level of pypm
as the lowest excited state in the Ru(bpy)2(pypm)]2+
series and of pypn as the lowest excited state in the
Ru(bpy)2(pypn)]+ series.
[4] J.J. Lafferty, F.H. Case, J. Org. Chem. 32 (1967) 1591.
[5] P.B. Sullivan, D.J. Salmon, T.J. Meyer, Inorg. Chem. 17 (1978)
3334.
[6] E.M. Kober, J.V. Caspar, B.P. Sullivan, T.J. Meyer, Inorg.
Chem. 27 (1988) 4587.
[7] J.N. Demas, G.A. Crosby, J. Phys. Chem. 75 (1971) 991.
[8] A. Juris, V. Balzani, Coord. Chem. Rev. 84 (1988) 85.
[9] D.P. Rillema, G. Allen, T.J. Meyer, D. Conrad, Inorg. Chem. 22
(1983) 1617.
[10] (a) F. Felix, J. Ferguson, H.U. Gudel, A. Ludi, J. Am. Chem.
Soc. 102 (1980) 4086. (b) S. Descurtius, F. Felix, J. Ferguson,
H.U. Gudel, A. Ludi, J. Am. Chem. Soc. 102 (1980) 4102. (c)
E.M. Kober, T.J. Meyer, Inorg. Chem. 21 (1982) 3967.
[11] M.J. Cook, A.P. Lewis, G.S.G. McAuliffe, V. Skarda, A.J.
Thomson, J.L. Glasper, D.J. Robbins, J. Chem. Soc., Perkin
Trans. II (1984) 1293.
[12] (a) B.K. Ghosh, A. Chakravorty, Coord. Chem. Rev. 95 (1985)
239. (b) M.K. DeArmond, C.M. Carlin, Coord. Chem. Rev. 36
(1981) 325.
[13] C.H. Rochester, Acidity Functions, Academic Press, New York,
1970, p. 22.
[14] R.J. Crutchley, N. Kress, A.B.P. Lever, J. Am. Chem. Soc. 105
(1983) 1170.
[15] A. Rugge, C.D. Clark, M.Z. Hoffman, D.P. Rillema, Inorg.
Chim. Acta 110 (1997) 285.
[16] Md.K. Nazeeruddin, K. Kalyanasundaram, Inorg. Chem. 28
(1989) 4251.
[17] H. Sun, M.Z. Hoffman, J. Phys. Chem. 97 (1993) 5014.
[18] A.R. Katritzky, C.W.R. Rees, E.F.V. Scriven, Comprehensive
Heterocyclic Chemistry II, vol. 6, Elsevier, New York, 1996, pp.
131–132.
Acknowledgements
[19] D.P. Rillema, C.B. Blanton, R.J. Shaver, D.C. Jackman, M.
Boldaji, S. Bundy, L.A. Worl, T.J. Meyer, Inorg. Chem. 31
(1992) 1600.
We thank the Office of Basic Energy Sciences of the
United States Department of Energy for support of the
investigation and the National Science Foundation for
the 400 MHz NMR and the laser lifetime equipment.
[20] (a) J.V.Caspar, T.J. Meyer, Inorg. Chem. 22 (1983) 2444. (b)
G.H. Allen, R.P. White, D.P. Rillema, T.J. Meyer, J. Am.
Chem. Soc. 106 (1984) 2613. (c) W.R. Cherry, L.J. Henderson
Jr., Inorg. Chem. 23 (1984) 983. (d) L.J. Henderson, W.R.
Cherry, J. Photochem. 28 (1985) 143. (e) K.R. Barqawi, A.
Llobet, T.J. Meyer, J. Am. Chem. Soc. 110 (1988) 7751. (f) R.S.
Lumpkin, E.M. Kober, L.A. Worl, Z. Murtaza, T.J. Meyer, J.
Phys. Chem. 94 (1990) 239. (g) J.V. Caspar, E.M. Kober, B.P.
Sullivan, T.J. Meyer, J. Am. Chem. Soc. 104 (1982) 630.
[21] D.P. Rillema, G. Allen, T.J. Meyer, D. Conrad, Inorg. Chem. 22
(1983) 1617.
[22] R. Sahai, L. Morgan, D.P. Rillema, Inorg. Chem. 27 (1988)
3495.
[23] R.J. Crutchley, A.B.P. Lever, Inorg. Chem. 21 (1982) 2276.
[24] H.B. Ross, M. Boldaji, D.P. Rillema, C.B. Blanton, R.P. White,
Inorg. Chem. 28 (1989) 1013.
References
[1] J.G. Vos, Polyhedron 11 (1992) 2285.
[2] (a) G.Y. Zheng, Y. Wang, D.P. Rillema, Inorg. Chem. 35 (1996)
7118. (b) F. Casalboni, Q.C. Mulazzani, C.D. Clark, M.Z.
Hoffman, P.L. Orizondo, M.W. Perkovic, D.P. Rillema, Inorg.
Chem. 36 (1997) 2252. (c) C.D. Clark, M.Z. Hoffman, D.P.
Rillema, Q.C. Mulazzani, Photochem. Photobiol. 110 (1997)
285.
[3] (a) P.J. Giordano, C.R. Bock, M.S. Wrighton, L.V. Interante,
R.F.S. Williams, J. Am. Chem. Soc. 99 (1977) 3187. (b) W.R.