(m, 1 H, H2), 5.92 (1 H, dddd, J2,3 10.0, J3,4ax 2.5, J1,3 2.0 Hz,
H3), 7.18–7.41 (10 H, m, Ar). dC (100 MHz, CDCl3) 30.6 (C6),
32.7 (C4), 36.0 (C1), 42.0 (C5), 76.8 (C1ꢀ), 126.0–129.9 (C2, C3,
Ar); elemental analysis found C 86.46, H 7.66, C19H20O requires
C 86.32, H 7.63%.
7 S. Araki, T. Kamei, T. Hirashita, H. Yamamura and M. Kawai, Org.
Lett., 2000, 2, 847–849.
8 (a) S. Araki, K. Kameda, J. Tanaka, T. Hirashita, H. Yamamura
and M. Kawai, J. Org. Chem., 2001, 66, 7919–7921; (b) S. Araki, S.
Kambe, K. Kameda and T. Harashita, Synthesis, 2003, 5, 751–754.
9 Y. Takemoto, M. Anzai, R. Yanada, F. Nobutaka, H. Ohno and T.
Ibuka, Tetrahedron Lett., 2001, 42, 1725.
10 W. Lee, K.-H. Kim, M. D. Surman and M. J. Miller, J. Org. Chem.,
2003, 68, 139–149.
11 L. A. T. Cleghorn, I. R. Cooper, R. Grigg, W. S. MacLachlan; and
V. Sridharan, Tetrahedron Lett., 2003, 44, 7969–7973.
12 T.-S. Jang, G. Keum, S. B. Kang, B. Y. Chung and Y. Kim, Synthesis,
2003, 5, 775–779.
13 (a) E. G. Kuntz, Rhoˆne-Poulenc Industries, U.S. Patent 4 248 802,
1981; (b) D. Sinou, Bull. Soc. Chim. Fr., 1987, 3, 480–486.
14 See for instance: (a) S. Jayasree, A. Seayad, B. R. Sarkar and
R. V. Chaudhari, J. Mol. Catal. A: Chem., 2002, 181, 221–235;
(b) M. Haumann, H. Koch, P. Hugo and R. Schoma¨cker, Appl.
Catal., A, 2002, 225, 239–249; (c) L. W. Francisco, D. A. Moreno
and J. D. Atwood, Organometallics, 2001, 20, 4237–4245; (d) C.
Dupuis, K. Adiey, L. Charruault, V. Michelet, M. Savignac and J. P.
Geneˆt, Tetrahedron Lett., 2001, 42, 6523–6526; (e) G. Verspui, G.
Papadogianakis and R. A. Sheldon, Catal. Today, 1998, 42, 449–458;
(f) C. Amatore, E. Blart, J. P. Geneˆt, A. Jutand, S. Lemaire-Audoire
and M. Savignac, J. Org. Chem., 1995, 60, 6829–6839; (g) E. Blart,
J. P. Geneˆt, M. Safi, M. Savignac and D. Sinou, Tetrahedron, 1994,
50, 505–514.
Eluted second was syn-12b contaminated by 5% of syn-12a
(8 mg, 3%).
dH (250 MHz, CDCl3) 1.70 (ddd, 1 H, J6ax,6eq = J6ax,5 = J6ax,1
=
12.0 Hz, H6 axial), 1.85–2.05 (m, 2 H, H4a and H6 equatorial),
2.12–2.40 (m, 2 H, H1 and H4b), 2.72–2.90 (m, 2 H, H5 and
ꢀ
OH), 4.72 (d, 1 H, J1,1 5.5 Hz), 5.55–5.65 (m, 1 H, H2), 5.90–
6.00 (m, 1 H, H3), 7.20–7.40 (m, 20 H, Ar). dC (100 MHz, CDCl3)
29.7 (C6), 32.3 (C4), 36.2 (C1), 45.0 (C5), 77.3 (C1ꢀ), 126.0–130.0
(C2, C3, Ar).
Procedure for the reaction between benzaldehyde and 11b
Benzaldehyde (106 mg, 1 mmol) was coupled with 11b (432 mg,
2 mmol) as described for 11a. The residue was purified by flash
chromatography (petroleum ether–EtOAc from 20 : 1 to 6 : 1)
to give first 1325 (40 mg, 10%) as an inseparable trans : cis 4.5
: 1 mixture, then syn-12a (13.4 mg, 5%), and a 1 : 1 mixture of
syn-12a and syn-12b (86.5 mg, 33%). Eluted last was 1024 (70 mg,
20%) as an inseparable trans : cis 4.5 : 1 mixture.
15 (a) W. K. Kohlpaintner, R. W. Fischer and B. Cornils, Appl. Catal.,
A, 2001, 221, 219–225; (b) B. Cornils, W. A. Herrmann and R. W.
Eckl, J. Mol. Catal. A: Chem., 1997, 116, 27–33; (c) B. Cornils and
E. G. Kuntz, J. Organomet. Chem., 1995, 502, 177–186.
16 I. P. Beletsaya, A. V. Cheprakov, in Organic Synthesis in Water, ed
P. A. Grieco, Blackie Academic & Professional London, 1998; ch. 5,
pp. 141–222.
Acknowledgements
This work was supported by the CNRS and the Ministe`re de
l’Education Nationale de l’Enseignement Supe´rieur et de la
Recherche.
17 J. Cossy, L. Tresnard and D. G. Pardo, Eur. J. Org. Chem., 1999,
1925–1933.
References
18 F. A. Khan and B. Prabhudas, Tetrahedron, 2000, 56, 7595–7599.
19 M. Linskeseder and Z. Erich, Justus Liebigs Ann. Chem., 1977, 6,
1039–1049.
1 C. J. Li and T. H. Chan, Tetrahedron Lett., 1991, 32, 7017–7020.
2 (a) J. Podlech and T. C. Maier, Synthesis, 2003, 5, 633–655; (b) K. K.
Chauhan and C. G. Frost, J. Chem. Soc., Perkin Trans. 1, 2000, 3015–
3019; (c) C. J. Li and T. H. Chan, Tetrahedron, 1999, 55, 11149–11176.
3 (a) T. H. Chan and Y. Yang, J. Am. Chem. Soc, 1999, 121, 3228–3229;
(b) T. P. Loh, K. T. Tan and Q. Y. Hu, Tetrahedron Lett., 2001, 42,
8705–8708.
4 (a) T. H. Chan and C. J. Li, J. Chem. Soc., Chem. Commun., 1992, 747–
748; (b) E. Kim, D. M. Gordon, W. Schmid and G. M. Whitesides,
J. Org. Chem., 1993, 58, 5500–5507; (c) D. M. Gordon and G. M.
Whitesides, J. Org. Chem., 1993, 58, 7937–7938; (d) J. Gao, R. Ha¨rter,
D. M. Gordon and G. M. Whitesides, J. Org. Chem., 1994, 59, 3714–
3715; (e) S. K. Choi, S. Lee and G. M. Whitesides, J. Org. Chem., 1996,
61, 8739–8745; (f) J. Gao, V. Martichonok and G. M. Whitesides,
J. Org. Chem., 1996, 61, 9538–9540; (g) T. H. Chan and M. B. Isaac,
Pure Appl. Chem., 1996, 68, 919–924.
20 J.-C. Fiaud and J.-L. Malleron, J. Chem. Soc., Chem. Commun., 1981,
22, 1159–1160.
21 J.-C. Fiaud and L. Aribi-Zouioueche, Tetrahedron Lett., 1982, 23,
5279–5282.
22 G. V. Krishtal, V. F. Kucherov and L. A. Yanovsaya, Synthesis, 1979,
2, 107–109.
23 B. K. Shull, T. Sakai, J. B. Nichols and M. Koreeda, J. Org. Chem.,
1997, 62, 8294–8303.
24 E. Dunkelblum, R. Levene and J. Klein, Tetrahedron, 1972, 28, 1009–
1024.
25 Y. Imada, M. Fujii, Y. Kubota and S.-I. Murahashi, Tetrahedron
Lett., 1997, 38, 8227–8230.
26 B. M. Trost, S. A. Godleski and J. L. Belletire, J. Org. Chem., 1979,
44, 2052–2054.
5 (a) Y. Canac, E. Levoirier and A. Lubineau, J. Org. Chem., 2001, 66,
3206–3210; (b) A. Lubineau, Y. Canac and N. Le Goff, Adv. Synth.
Catal., 2002, 344, 319–327.
27 B. M. Trost and J. W. Herndon, J. Am. Chem. Soc., 1984, 106, 6835–
6837.
28 K. L. Granberg and J.-E. Ba¨ckvall, J. Am. Chem. Soc., 1992, 114,
6858–6863.
6 J. A. Marshall and C. M. Grant, J. Org. Chem., 1999, 64, 696–697.
1 3 8 0
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 3 7 5 – 1 3 8 0