1842
J. Am. Chem. Soc. 2000, 122, 1842-1843
Alutacenoic Acids A and B, Rare Naturally
Occurring Cyclopropenone Derivatives Isolated from
Fungi: Potent Non-Peptide Factor XIIIa Inhibitors
Hiroshi Kogen,*,† Toshihiro Kiho,† Keiko Tago,†
Shuichi Miyamoto,† Tomoyuki Fujioka,‡ Noriko Otsuka,‡
Keiko Suzuki-Konagai,§ and Takeshi Ogita*,§
Figure 1.
potent specific inhibitors of factor XIIIa (see Supporting Informa-
tion). Antibacterial activities are absent in both the 1a and 1b.
Surprisingly, structure determination by spectroscopic methods
Exploratory Chemistry Research Laboratories
Pharmacological and Molecular Biological Research
Laboratories, and Biomedical Research Laboratories
Sankyo Co., Ltd., 2-58, Hiromachi 1-chome
Shinagawa-ku Tokyo, 140-8710 Japan
(IR, MS, H,13C NMR, DQFCOSY, HOHAHA, and HMBC)12
1
revealed that these two compounds are monosubstituted cyclo-
propenone derivatives with aliphatic tethers which attach to a
terminal carboxylic acid (Figure 1). Cyclopropenones have
attracted considerable attention from chemists during the past four
decades. In fact, there have been many efforts toward the synthesis
of cyclopropenone derivatives.13-15 However, only three cyclo-
propenone derivatives, penitricin16 and two sesquiterpenes,17 have
been reported to be isolated from natural sources. Among them,
penitricin is the only naturally occurring cyclopropenone which
shows biological activities as an antibiotic. It is particularly
interesting that these cyclopropenone derivatives 1a and 1b are
isolated from a common fungus, Eupenicillium. We applied the
synthesis of 1a, 1b, and their derivatives to confirm these unique
ring systems and study the structure-activity relationships for
chain length between the ring and carboxyl group.
ReceiVed July 7, 1999
Factor XIII is a plasma transglutaminase which acts on the
final step in the blood coagulation cascade.1 Factor XIII exists in
plasma as a zymogen and is activated to factor XIIIa by thrombin
in the presence of Ca2+ in a process that reveals a cysteine active
center.2 The enzyme covalently cross-links fibrin monomers and
converts soft fibrin clots to hard clots.3 These clots are less rapidly
lysed by agents such as plasmin or tissue plasminogen activator.
In addition, factor XIIIa is also known to cross-link fibrin to
extracellular matrixes, such as vitronectin, fibronectin, and
collagen, thereby forming additional clots to the vessel wall.
Specific inhibitors of factor XIIIa are therefore thought to offer
possibilities in the therapy for thrombosis,1a atherosclerosis, and
coronary heart disease,4 and a few such inhibitors have already
been reported. In addition to several peptides5 and the synthetic
compound L-722,151,6 a known antimicrobial agent, cerulenin,7
has also been reported by Tymiak to show inhibitory activity (10
µM)8 against factor XIIIa. To our knowledge, cerulenin is the
only naturally occurring non-peptide factor XIIIa inhibitor. Here
we report the isolation of novel specific non-peptide inhibitors
of factor XIIIa, alutacenoic acids A (1a) and B (1b), from fungi.
Both compounds have an extremely rare cyclopropenone ring
isolated from natural sources.
Total syntheses of cyclopropenone derivatives 1 (n ) 5-11)
were accomplished according to the method of Nakamura,15
establishing the construction of substituted cyclopropenone rings
as shown in Scheme 1. Readily available cyclopropenone acetal
(9) Alutacenoic acid A (1a): colorless oil; HRMS (FAB) calcd for C9H12O3
(M + H)+ 169.0865, found 169.0875; IR νmax (CHCl3) 3084, 2944, 2867,
1826, 1740, 1711, 1591, 1414 cm-1; H NMR (360 MHz, CD3OD) δ (ppm)
1
1.43-1.53 (m, 2H), 1.67 (m, 2H), 1.77 (m, 2H), 2.32 (t, J ) 7.5 Hz, 2H),
2.75 (t, J ) 7.3 Hz, 2H), 8.74 (s, 1H); 13C NMR (90 MHz, CD3OD) δ (ppm)
25.7, 26.5, 27.8, 29.6, 34.9, 150.0, 161.4, 170.9, 177.8. 1a gradually
decomposed within a few months on storage at -20 °C. We stored a solution
of 1a in a mixture of benzene and t-BuOH at -20 °C without decomposition
for at least 6 months. Alutacenoic acid B (1b): colorless needles; mp 66-69
°C, HRMS (FAB) calcd for C11H16O3 (M + H)+ 197.1178, found 197.1169;
IR νmax (KBr) 3059, 1821, 1732, 1609, 1567 cm-1; 1H NMR (360 MHz, CD3-
OD) δ (ppm) 1.33-1.51 (m, 6H), 1.61 (m, 2H), 1.75 (m, 2H), 2.28 (t, J )
7.4 Hz, 2H), 2.74 (t, J ) 7.2 Hz, 2H), 8.73 (s, 1H); 13C NMR (90 MHz,
CD3OD) δ (ppm) 26.5, 27.1, 28.1, 30.2, 30.4, 30.5, 35.5, 150.2, 161.8, 171.4,
178.2. 1b was stored in a freezer (-20 °C) without decomposition for at least
2 years.
Our recent screening efforts have concentrated on the search
for specific inhibitors of factor XIIIa. As a result of our efforts,
we have isolated alutacenoic acids A (1a) and B (1b)9 (1a, IC50
) 1.9 µM; 1b, IC50 ) 0.61 µM),10 a pair of fungal metabolites
from Eupenicillium alutaceum Scott,11 and found them to be
† Exploratory Chemistry Research Laboratories.
(10) For the factor XIIIa assay utilized for this study, see: Usui, T.; Takagi,
J.; Saito, Y. J. Biol. Chem. 1993, 268, 12311-12316.
‡ Pharmacological and Molecular Biological Research Laboratories.
§ Biomedical Research Laboratories.
(11) Alutacenoic acid B (1b) is also isolated from Aspergillus fumigatus
Fresenius.
(1) (a) Leidy, E. M.; Stern, A. M.; Friedman, P. A.; Bush, L. R. Thromb.
Res. 1990, 59, 15-26. (b) Greenberg, C. S.; Birckbichler, P. J.; Rice, R. H.
FASEB J. 1991, 5, 3071-3077. (c) Aeschliman, D.; Paulsson, M. Thromb.
Haemostasis 1994, 71, 402-415. (d) Yee, V. C.; Pedersen, L. C.; Trong, I.
L.; Bishop, P. D.; Stenkamp, R. E.; Teller, D. C. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 7296-7300.
(2) Curtis, C. G.; Brown, K.; Credo, R. B.; Domanik, R. A.; Gray, A.;
Stenberg, P.; Lorand, L. Biochemistry 1974, 13, 3774-3780.
(3) (a) Bruner-Lorand, J.; Pilkington, T. R. E.; Lorand, L. Nature (London)
1966, 210, 1273-1274. (b) Gladner, J. A.; Nosssal, R. Thromb. Res. 1983,
30, 273-288. (c) Shen, L.; Lorand, L. J. Clin. InVest. 1983, 71, 1336-1341.
(4) (a) Kloczko, J.; Wojtukiewicz, M.; Bielawiec, M.; Zarzycka, B.;
Kinalska, I. Acta Haematol. 1986, 76, 81-85. (b) Francis, C. W.; Connaghan,
D. G.; Scott, W. L.; Marder, V. J. Circulation 1987, 75, 1170-1177. (c)
Kloczko, J.; Wojtukiewicz, M.; Bielawiec, M.; Zuch, A. Thromb. Res. 1988,
51, 575-581.
(5) Synthetic peptides: Achyuthan, K. E.; Slaughter, T. F.; Santiago, M.
A.; Enghild, J. J.; Greenberg, C. S. J. Biol. Chem. 1993, 268, 21284-21292.
Natural peptide: Finney, S.; Seale, L.; Sawyer, R. T.; Wallis, R. B. Biochem.
J. 1997, 324, 797-805.
(6) (a) Leidy, E. M.; Stern, A. M. Thromb. Res. 1990, 59, 15-26. (b)
Shebuski, R. J.; Sitko, G. R.; Claremon, D. A.; Baldwin, J. J.; Remy, D. C.;
Stern, A. M. Blood 1990, 75, 1455-1459. (c) Freund, K. F.; Doshi, K. P.;
Gaul, S. L.; Claremon, D. A.; Remy, D. C.; Baldwin, J. J.; Pitzenberger, S.
M.; Stern, A. M. Biochemistry 1994, 33, 10109-10119.
(7) (a) Matsumae, A.; Kamio, Y.; Hata, T. J. J. Antibiot. Ser. A 1963, 16,
236-238. (b) Sano, Y.; Nomura, S.; Kamio, Y.; Omura, S.; Hata, T. J.
Antibiot. 1967, 20, 344-348. (c) Arison, B. H.; Omura, S. J. Antibiot. 1974,
27, 28-30. (d) Omura, S. Methods Enzymol. 1981, 72, 520-532.
(8) Tymiak, A. A.; Tuttle, J. G.; Kimball, S. D.; Wang, T.; Lee, V. G. J.
Antibiot. 1993, 46, 204-206.
(12) For a detailed study on structure determination by NMR, see the
Supporting Information.
(13) (a) Breslow, R.; Haynie, R.; Mirra, J. J. Am. Chem. Soc. 1959, 81,
247-248. (b) Greenberg, A.; Tomkins, R. P. T.; Dobrovolny, M.; Liebman,
J. F. J. Am. Chem. Soc. 1983, 105, 6855-6858. (c) Staley, W. S.; Nordon, T.
D.; Taylor, W. H.; Harmony, M. D. J. Am. Chem. Soc. 1987, 109, 7641-
7647. (d) Wiberg, K. B.; Marquez, M. J. Am. Chem. Soc. 1998, 120, 2932-
2938.
(14) Review: (a) Krebs, A. W. Angew. Chem., Int. Ed. Engl. 1965, 4, 10-
22. (b) Potts, K. T.; Baum, J. S. Chem. ReV. 1974, 74, 189-213. (c) Eicher,
T.; Weber, J. L. Top. Curr. Chem. 1975, 57, 1-109.
(15) (a) Isaka, M.; Matsuzawa, S.; Yamago. S.; Ejiri, S.; Miyachi, Y.;
Nakamura, E. J. Org. Chem. 1989, 54, 4727-4729. (b) Isaka, M.; Ando, R.;
Morinaka. Y.; Nakamura, E. Tetrahedron Lett. 1991, 32, 1339-1342. (c) Isaka,
M.; Ejiri, S.; Nakamura, E. Tetrahedron 1992, 48, 2045-2057. (d) Tokuyama,
H.; Isaka, M.; Nakamura, E. J. Antibiot. 1992, 45, 1148-1154.
(16) (a) Okuda, T.; Yoneyama, Y.; Fujiwara, A.; Furumai, T. J. Antibiot.
1984, 37, 712-717. (b) Okuda, T.; Yoneyama, Y.; Fujiwara, A.; Furumai,
T.; Maruyama, H. B. J. Antibiot. 1984, 37, 718-722. (c) Okuda, T.; Shimma,
N.; Furumai, T. J. Antibiot. 1984, 37, 723-727.
(17) Bohlmann, F.; Jakupovic, J.; Mueller, L.; Schuster, A. Angew. Chem.,
Int. Ed. Engl. 1981, 20, 292-293.
10.1021/ja992355s CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/10/2000