kp[RH]0Ri/fkSnH was found to be 11.6 3 1029 s21.§ Taking kp
= 1.3 m21 s21 12 [RH]0 = 7.188 m, Ri = 0.89 3 1026 m s21 11
, ,
and an average of f = 0.46, we calculated kSnH = 1559 m21 s21
at 345.5 K.
In summary, the rate constants of 66 and 1600 m21 s21 at
345.5 K were obtained for the reaction of cumylperoxyl radicals
with (TMS)3SiH and Bu3SnH, respectively. Therefore, the
alkylperoxyl radicals abstract a hydrogen atom from the tin
hydride 24 times faster than from the silane. (TMS)3SiH is a
notably less reactive hydrogen donor than Bu3SnH, mainly due
to the ca. 5 kcal mol21 difference in bond dissociation
energies.14 For comparison, primary alkyl radicals and acyl
radicals abstract hydrogen from the silane five and 16 times
slower, respectively, than from the tin hydride at the same
temperature and in much faster processes.14
Fig. 1 Plots of (2) 2d[O2]/dt and (5) (2d[O2]/dt)0/(2d[O2]/dt) 2
(2d[O2]/dt)/(2d[O2]/dt)0 vs. [(TMS)3SiH]; [AIBN] = 0.021 m at 345.5 K.
Notes and references
† This relation can be used when the initial oxidation rate and the initiation
rate remain essentially constant under the experimental conditions.
‡ This is possible if the reactions in termination 1 dominate the systems and
if the products of these reactions are not active towards initiation.
§ Since the chain length of oxidation [i.e. n = (2d[O2]/dt)exp/Ri] is less than
12, the initial rate of oxidation is corrected for oxygen absorption by the
and the termination for cumylperoxyl radicals12 are Ri = 1.09 3
1026 m s21 and 2kt = 3.2 3 104 m21 s21, respectively, we
calculated kSiH = 66.3 m21 s21 at 345.5 K.
The inhibition of thermally initiated (0.0172 m of AIBN at
345.5 K) oxidations of pure cumene by Bu3SnH (concentration
range of 1.07 3 1023 to 3.20 3 1023 m) shows an induction
period (t). Termination 2 in Scheme 2 describes the inhibition
mechanism and the initial rate of oxidation (before exiting from
the induction period), given by eqn. (2), of peroxyl radicals
initiator, and nitrogen evolution from the initiator, i.e. 2d[O2]/dt
=
(2d[O2]/dt)exp 2 Ri, where the (2d[O2]/dt)exp is the experimental initial
rate of cumene oxidation.
1 (a) For example, see: D. P. Curran, N. Porter and B. Giese,
Stereochemistry of Radical Reactions, VCH, Weinheim, 1995; W. B.
Motherwell and D. Crich, Free Radical Chain Reactions in Organic
Synthesis, Academic Press, London, 1992; (b) For reviews on
(TMS)3SiH, see: C. Chatgilialoglu, Acc. Chem. Res., 1992, 25, 188; C.
Chatgilialoglu, C. Ferreri and T. Gimisis, in The Chemistry of Organic
Silicon Compounds, ed. S. Rappoport and Y. Apeloig, Wiley, London,
1998, vol. 2, pp. 1539–1579.
2 A terminology introduced by Barton. For example, see: D. H. R. Barton,
Aldrichim. Acta, 1990, 23, 3; D. H. R. Barton and S. I. Parekh, Half a
Century of Free Radical Chemistry, CUP, Cambridge, UK, 1993.
3 For some representative reviews, see: K. U. Ingold, Acc. Chem. Res.,
1969, 2, 1; N. A. Porter, in Organic Peroxides, ed. W. Ando, Wiley,
Chichester, 1992; C. von Sonntag and H.-P. Schuchmann, Angew.
Chem., Int. Ed. Engl., 1991, 30, 1229; C. Walling, in Active Oxygen in
Chemistry, ed. C. S. Foote, J. C. Valentine, A. Greenberg and J. F.
Liebman, Blackie, London, 1995, pp. 24–65.
kp[RH]0 Ri
(-d[O2 ]/ dt) =
(2)
fkSnH[Bu3SnH]0
trapped by each molecule of Bu3SnH. The use of Boozer et al.’s
induction period method,13 of which an example is illustrated in
Fig. 2 (i.e. suppression of the oxygen uptake by the presence of
Bu3SnH) allows the determination of the t values. Then the
stoichiometric factor f can be obtained from f
= Rit/
[Bu3SnH]0.9,10 All the data are summarized in Table 1. From the
slope of the linear plot between 2d[O2]/dt and 1/[Bu3SnH]0, the
4 For example, see: G. L. Hill and G. M. Whitesides, J. Am. Chem. Soc.,
1974, 96, 870; D. H. R. Barton, D. Crich and W. B. Motherwell,
J. Chem. Soc., Chem. Commun., 1985, 1066; H. C. Brown, M. M.
Midland and G. W. Kabalka, Tetrahedron, 1986, 42, 5523.
5 E. Nakamura, T. Inubushi, S. Aoki and D. Machii, J. Am. Chem. Soc.,
1991, 113, 8980; S. Moutel and J. Prandi, Tetrahedron Lett., 1994, 35,
8163; S. Mayer and J. Prandi, Tetrahedron Lett., 1996, 37, 3117; M.
Sawamura, Y. Kawaguchi, K. Sato and E. Nakamura, Chem. Lett., 1997,
705; M. Sawamura, Y. Kawaguchi and E. Nakamura, Synlett, 1997,
801.
6 For example, see: D. L. Boger and J. A. McKie, J. Org. Chem., 1995, 60,
1271.
7 E. Nakamura, K. Sato and Y. Imanishi, Synlett, 1995, 525.
8 K. A. Tallman, C. Tronche, D. J. Yoo and M. M. Greenberg, J. Am.
Chem. Soc., 1998, 120, 4903.
9 E. T. Denisov and I. V. Khudyakov, Chem. Rev., 1987, 87, 1313; E. T.
Denisov, Liquid-Phase Reaction Rate Constants, Plenum, New York,
1974; N. M. Emanuel, E. T. Denisov and Z. K. Maizus, Liquid Phase
Oxidation of Hydrocarbons, Plenum, New York, 1967.
Fig. 2 Oxygen consumption during the AIBN-initiated (0.0172 m) oxidation
of cumene in the presence of 2.64 3 1023 m of Bu3SnH at 345.5 K.
10 J. A. Howard, Y. Ohkatsu, J. H. B. Chenier and K. U. Ingold, Can. J.
Chem., 1973, 51, 1543; J. H. B. Chenier, S. B. Tong and J. A. Howard,
Can. J. Chem., 1978, 56, 3047; S. Korcek, J. H. B. Chenier, J. A.
Howard and K. U. Ingold, Can. J. Chem., 1972, 50, 2285.
11 J. P. Van Hook and A. V. Tobolsky, J. Am. Chem. Soc., 1958, 80, 779;
E. Niki, Y. Kamija and N. Ohta, Bull. Chem. Soc. Jpn., 1969, 42,
3220.
12 D. G. Hendry, J. Am. Chem. Soc., 1967, 89, 5433.
13 C. E. Boozer, G. S. Hammond, C. E. Hamilton and J. N. Sen, J. Am.
Chem. Soc., 1955, 77, 3233.
Table 1 Kinetic data for the oxidation of cumene in the presence of
Bu3SnHa
(d[O2]/dt)b/m s21
[Bu3SnH]0/m
n
t/min
f
10.94 3 1026
7.01 3 1026
3.15 3 1026
4.67 3 1026
a
1.07 3 1023
1.64 3 1023
2.64 3 1023
3.20 3 1023
11.8
7.5
3.4
5.0
10
15
21
20
0.52
0.51
0.44
0.35
[AIBN] = 0.0172 m, Ri = 0.89 3 1026 m s21 at 345.5 K. d[O2]/dt =
(d[O2]/dt)exp 2 Ri.
b
14 C. Chatgilialoglu, Chem. Rev., 1995, 95, 1229.
Communication 8/08894B
406
Chem. Commun., 1999, 405–406