Communication
ChemComm
Then the amounts of CD3+ T cells and CD3+CD8+ T cells in
the peripheral blood, spleen and tumours of C57BL/6 mice after
18 day treatment were determined.10 We observed no change in
the total CD3+ proportions in peripheral blood, while a slight
increase in the spleen and tumours was detected compared to
the solvent control (Fig. S13, ESI†). The number of CD3+CD8+ T
lymphocytes in the peripheral blood and spleen slightly increases
after treatment (Fig. 5b); notably, the proportions of CD3+CD8+
cytotoxic T lymphocytes in tumour tissues were significantly
increased from 6.5% of total cells in the solvent group to
20.7% in the Pt-1 treatment group, which is higher than that
of the oxaliplatin group (16.4%). These results provide further
support that Pt-1 can activate the immune system to alleviate
cancer, with a higher activity than oxaliplatin.
V. Jooste, P. van Endert, M. Ducreux, L. Zitvogel, F. Piard and G. Kroemer,
Oncogene, 2010, 29, 482.
´
8 L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel and G. Kroemer, Cancer
Cell, 2015, 28, 690–714.
9 K. Lu, C. He and W. Lin, J. Am. Chem. Soc., 2015, 137, 7600–7603.
10 X. Zhao, K. Yang, R. Zhao, T. Ji, X. Wang, X. Yang, Y. Zhang,
K. Cheng, S. Liu, J. Hao, H. Ren, K. W. Leong and G. Nie, Biomater-
ials, 2016, 102, 187–197.
11 K. Lu, C. He, N. Guo, C. Chan, K. Ni, R. R. Weichselbaum and
W. Lin, J. Am. Chem. Soc., 2016, 138, 12502–12510.
12 L. Zitvogel, O. Kepp and G. Kroemer, Nat. Rev. Clin. Oncol., 2011,
8, 151.
13 D. V. Krysko, A. D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis and
P. Vandenabeele, Nat. Rev. Cancer, 2012, 12, 860.
14 I. Mellman, G. Coukos and G. Dranoff, Nature, 2011, 480, 480.
15 N. Wang, Z. Wang, Z. Xu, X. Chen and G. Zhu, Angew. Chem., Int. Ed.,
2018, 57, 3426–3430.
16 A. Terenzi, C. Pirker, B. K. Keppler and W. Berger, J. Inorg. Biochem.,
2016, 165, 71–79.
In summary, platinum(II) complexes containing phospho-
nate esters were found to preferentially accumulate in the ER
followed by ROS-associated ER stress, which triggers the expo-
sure CRT on the cell membrane and the secretion of ATP and
release of HMGB1. These DAMP signals primed the immune
cells and cause cytotoxicity towards cancer cells. The gold-
standard in vivo vaccination assay verified that Pt-1-treated
cancer cells are immunogenic by showing a significantly
delayed generation of tumours in the treatment group. Further
in vivo study revealed that Pt-1 displayed a lower acute toxicity
and stronger anti-tumour activity than oxaliplatin in the
tumour-bearing immunocompetent mouse model in a manner
associated with the activation of tumour immunity, rendering
the Pt-aminophosphonate class of complexes a new scaffold for
developing chemotherapeutics capable of triggering immune
responses against solid tumours.
The Natural Science Foundation of China (No. 21401031,
21431001, 81473102), IRT_16R15, Natural Science Foundation of
Guangxi Province (No. 2015GXNSFAA139043, 2016GXNSFGA380005),
the Fundamental Research Funds for the Central Universities,
Guangdong Key Lab of Chiral Molecule and Drug Discovery
(2019B030301005), and Shenzhen Fundamental Research Fund
JCYJ20180508163206306 are acknowledged.
¨
17 U. Jungwirth, D. N. Xanthos, J. Gojo, A. K. Bytzek, W. Korner,
P. Heffeter, S. A. Abramkin, M. A. Jakupec, C. G. Hartinger,
U. Windberger, M. Galanski, B. K. Keppler and W. Berger, Mol.
Pharmacol., 2012, 81, 719–728.
18 B. Englinger, C. Pirker, P. Heffeter, A. Terenzi, C. R. Kowol,
B. K. Keppler and W. Berger, Chem. Rev., 2019, 119, 1519–1624.
19 D. Y. Q. Wong, W. W. F. Ong and W. H. Ang, Angew. Chem., Int. Ed.,
2015, 54, 6483–6487.
20 D. Wernitznig, K. Kiakos, G. Del Favero, N. Harrer, H. Machat,
A. Osswald, M. A. Jakupec, A. Wernitznig, W. Sommergruber and
B. K. Keppler, Metallomics, 2019, 11, 1044–1048.
21 M. Sabbatini, I. Zanellato, M. Ravera, E. Gabano, E. Perin,
B. Rangone and D. Osella, J. Med. Chem., 2019, 62, 3395–3406.
22 M. Obeid, A. Tesniere, F. Ghiringhelli, G. M. Fimia, L. Apetoh,
J.-L. Perfettini, M. Castedo, G. Mignot, T. Panaretakis, N. Casares,
´
D. Metivier, N. Larochette, P. van Endert, F. Ciccosanti, M. Piacentini,
L. Zitvogel and G. Kroemer, Nat. Med., 2006, 13, 54.
23 R. Tufi, T. Panaretakis, K. Bianchi, A. Criollo, B. Fazi, F. Di Sano,
A. Tesniere, O. Kepp, P. Paterlini-Brechot, L. Zitvogel, M. Piacentini,
G. Szabadkai and G. Kroemer, Cell Death Differ., 2007, 15, 274.
24 J. Krebs, L. B. Agellon and M. Michalak, Biochem. Biophys. Res.
Commun., 2015, 460, 114–121.
25 Z. Xue, M. Lin, J. Zhu, J. Zhang, Y. Li and Z. Guo, Chem. Commun.,
2010, 46, 1212–1214.
26 Y. Zhang, R. Cao, F. Yin, F. Y. Lin, H. Wang, K. Krysiak, J. H. No,
D. Mukkamala, K. Houlihan, J. Li, C. T. Morita and E. Oldfield,
Angew. Chem., Int. Ed., 2010, 49, 1136–1138.
27 M. Wilhelm, V. Kunzmann, S. Eckstein, P. Reimer, F. Weissinger,
T. Ruediger and H.-P. Tony, Blood, 2003, 102, 200–206.
28 Y. Xu, J. Aoki, K. Shimizu, M. Umezu-Goto, K. Hama, Y. Takanezawa,
S. Yu, G. B. Mills, H. Arai, L. Qian and G. D. Prestwich, J. Med. Chem.,
2005, 48, 3319–3327.
29 K. Becker, C. Herold-Mende, J. J. Park, G. Lowe and R. H. Schirmer,
J. Med. Chem., 2001, 44, 2784–2792.
Conflicts of interest
´
30 A.-B. Witte, K. Anestål, E. Jerremalm, H. Ehrsson and E. S. J. Arner,
There are no conflicts to declare.
Free Radical Biol. Med., 2005, 39, 696–703.
31 K.-B. Huang, Z.-F. Chen, Y.-C. Liu, Z.-Q. Li, J.-H. Wei, M. Wang,
X.-L. Xie and H. Liang, Eur. J. Med. Chem., 2013, 64, 554–561.
32 K.-B. Huang, Z.-F. Chen, Y.-C. Liu, Z.-Q. Li, J.-H. Wei, M. Wang,
G.-H. Zhang and H. Liang, Eur. J. Med. Chem., 2013, 63, 76–84.
33 The Pt compounds could react with DMSO and therefore the active
species may be the DMSO adducts. Further studies are needed to
verify this hypothesis.
References
1 Y. Jung and S. J. Lippard, Chem. Rev., 2007, 107, 1387–1407.
2 N. P. E. Barry and P. J. Sadler, Pure Appl. Chem., 2014, 86, 1897.
3 M. Fanelli, M. Formica, V. Fusi, L. Giorgi, M. Micheloni and P. Paoli,
Coord. Chem. Rev., 2016, 310, 41–79.
¨
4 N. Muhammad and Z. Guo, Curr. Opin. Chem. Biol., 2014, 19, 34 N. Romani, S. Gruner, D. Brang, E. Kampgen, A. Lenz, B. Trockenbacher,
144–153.
G. Konwalinka, P. O. Fritsch, R. M. Steinman and G. Schuler, J. Exp.
Med., 1994, 180, 83–93.
´
5 M. A. Fuertes, C. Alonso and J. M. Perez, Chem. Rev., 2003, 103,
645–662.
35 A. A. van de Loosdrecht, E. Nennie, G. J. Ossenkoppele, R. H. Beelen
and M. M. Langenhuijsen, J. Immunol. Methods, 1991, 141, 15–22.
36 A. S. I. Loskog, M. E. Fransson and T. T. H. Totterman, Clin. Cancer
Res., 2005, 11, 8816–8821.
6 C.-H. Leung, S. Lin, H.-J. Zhong and D.-L. Ma, Chem. Sci., 2015, 6,
871–884.
7 A. Tesniere, F. Schlemmer, V. Boige, O. Kepp, I. Martins, F. Ghiringhelli,
L. Aymeric, M. Michaud, L. Apetoh, L. Barault, J. Mendiboure, J. P. Pignon, 37 S. Zhang, H. Xue and Q. Chen, Oncotarget, 2016, 7, 58579–58585.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13066--13069 | 13069