P.K. Bhaumik et al. / Inorganica Chimica Acta 390 (2012) 167–177
177
[15] W. Liu, Y. Song, Y. Li, Y. Zou, D. Dang, C. Ni, Q. Meng, Chem. Commun. (2004)
2348.
4. Summary
[16] D.W. Smith, Inorg. Chim. Acta 22 (1977) 107.
[17] K.E. Halvorson, C. Patterson, R.D. Willett, Acta Crystallogr., Sect. B 46 (1990)
508.
It was known that d9 cations in five coordinated environment
tend to stabilize either a compressed trigonal bipyramid or an api-
cally elongated square pyramid with clearly an energetic choice for
the latter coordination. Three possible square-pyramidal confor-
mations may interchange the conformation via a trigonal bipyra-
midal intermediate. The presence of different ligands, rigidity
effects of polydentate ligands, or packing effects in the unit cell
may generate energy minima for geometries different from those
just mentioned. In the present work, a tridentate Schiff base has
been used and the strain by the rigid tridentate ligand has stabi-
lized one of the three possible square-pyramidal conformations.
The same ligand is also used to form a square planar compound
in presence of azide. The variation in geometry is facilitated by
the relative ligand field strength of azide compared to water. How-
ever, the strain, introduced by the weakening of the copper-oxygen
bond due to the presence of a methyl-group on oxygen atom of the
N,N,O donor Schiff base may be the reason for the shift of the
geometry from square pyramid towards an ‘inverse square pyra-
mid’. Secondly, a unique zipper motif is formed in compound 2
[18] R.G. McDonald, M.J. Riley, M.A. Hitchman, Inorg. Chem. 27 (1988) 894.
[19] D. Reinen, C. Friebel, Inorg. Chem. 23 (1984) 791.
[20] D. Reinen, M. Atanasov, Chem. Phys. 136 (1989) 27.
[21] A. P Bisson, C.A. Hunter, Chem. Commun. 15 (1996) 1723.
[22] R. Schutz, M. Cantin, C. Roberts, B. Greiner, E. Uhlmann, C. Leumann, Angew.
Chem., Int. Ed. 39 (2000) 1250.
[23] J.L. Sessler, R. Wang, Angew. Chem., Int. Ed. 37 (1998) 1726.
[24] C.A. Hunter, P.S. Jones, P.M.N. Tiger, S. Tomas, Chem. Commun. (2003) 1642.
[25] R.H. Horton, L.A. Moran, R.S. Ochs, D.J. Rawn, G.K. Scrimgeour, Principles of
Biochemistry, Prentice Hall, London, 1992.
[26] B.R. Amirikyan, A.V. Vologodskii, Y.L. Lyubchenko, Nucleic Acids Res. 9 (1981)
5469.
[27] H. Wendt, A. Baici, H.R. Bosshard, J. Am. Chem. Soc. 116 (1994) 6973.
[28] K.T. O’Neil, R.H. Hoess, W.F. Degrado, Science 249 (1990) 774.
[29] M. Kubota, A. Ono, Tetrahedron Lett. 45 (2004) 5755.
[30] O.Q. Munro, K. du Toit, S.E. Drewes, N.R. Crouch, D.A. Mulholland, New J. Chem.
30 (2006) 197.
[31] A.P. Bisson, F.J. Carver, D.S. Eggleston, R.C. Haltiwanger, C.A. Hunter, D.L.
Livingstone, J.F. McCabe, C. Rotger, A.E. Rowan, J. Am. Chem. Soc. 122 (2000) 8856.
[32] M.J. Plater, S. Aiken, G. Bourhill, Tetrahedron Lett. 42 (2001) 2225.
[33] X.M. Chen, G.F. Liu, Chem. Eur. J. 8 (2002) 4811.
[34] M. Barboiu, E. Petit, G. Vaughan, Chem. Eur. J. 10 (2004) 2263.
[35] S. Das, S.A. Maloor, S. Pal, S. Pal, Cryst. Growth Des. 6 (2006) 2103.
[36] L.J. Barbour, G.W. Orr, J.L. Atwood, Chem. Commun. (2000) 859.
[37] F. Hu, X. Yin, Y. Mi, J. Zhang, Y. Zhuang, X. Dai, Inorg. Chem. Commun. 12
(2009) 628.
by the H-bonded water chain and
p-stacked flat complex mole-
cules which are H-bonded to the water chain.
[38] E. Tajkhorshid, P. Nollert, M.O. Jensen, L.J.W. Miercke, J. O’Connell, R.M. Stroud,
K. Schulten, Science 296 (2002) 525.
Acknowledgments
[39] K.M. Jude, S.K. Wright, C. Tu, D.N. Silverman, R.E. Viola, D.W. Christianson,
Biochemistry 41 (2002) 2485.
[40] G. Sainz, C.J. Carrell, M.V. Ponamarev, G.M. Soriano, W.A. Cramer, J.L. Smith,
Biochemistry 39 (2000) 9164.
[41] L. Infantes, S. Motherwell, Cryst. Eng. Commun. 4 (2002) 454.
[42] G.M. Sheldrick, SHELXS-97 and SHELXL-97, University of Göttingen, Germany,
1997.
[43] ABSPACK, version 1, Oxford Diffraction, Abingdon, 2005.
[44] M.A. Spackman, D. Jayatilaka, Cryst. Eng. Commun. 11 (2009) 19.
[45] F.L. Hirshfeld, Theor. Chim. Acta 44 (1977) 129.
This work was supported by the University Grants Commission,
CAS-UGC, New Delhi. Crystallographic data were performed at the
DST-FIST, India-funded Single Crystal Diffractometer Facility at the
Department of Chemistry, Jadavpur University. One of the authors
(S.J.) is thankful to CSIR, India for awarding a Junior Research Fel-
lowship (Sanction No. 09/096(0659)/2010-EMR-I, dated 18.1.11).
[46] H.F. Clausen, M.S. Chevallier, M.A. Spackman, B.B. Iversen, New J. Chem. 34
(2010) 193.
Appendix A. Supplementary material
[47] A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. McKinnon, B. Kahr, Cryst.
Growth Des. 8 (2008) 4517.
Crystallographic data for the analysis have been deposited with
the Cambridge Crystallographic data Centre, CCDC Nos. 841863
(Compound 1), 826747 (Compound 2), 841864 (Compound 3).
Copies of this information may be obtained free of charge from
CCDC, 12 Union Road, Cambridge, CB21EZ, UK (fax: +44-1223-
336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.
[48] A. Parkin, G. Barr, W. Dong, C.J. Gilmore, D. Jayatilaka, J.J. McKinnon, M.A.
Spackman, C.C. Wilson, Cryst. Eng. Commun. 9 (2007) 648.
[49] M.A. Spackman, J.J. McKinnon, Cryst. Eng. Commun. 4 (2002) 378.
[50] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Crystal
Explorer 2.0, University of Western Australia, Perth, Australia, 2007, <http://
[51] J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Crystallogr., Sect. B 60 (2004)
627.
[52] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc.,
Dalton Trans. (1984) 1349.
[53] J.V. Folgado, E. Escriva, A.B. Porter, D.B. Porter, Polyhedron 6 (1987) 1533.
[54] D.L. Kepert, Inorganic Chemistry Concepts, vol. 6, Springer-Verlag, New York,
1982.
[55] R.J. Gillespie, R.S. Nyholm, Q. Rev, Chem. Soc. 11 (1957) 339.
[56] J.S. Wood, Prog. Inorg. Chem. 16 (1972) 227.
[57] M.I. Arriortua, J.L. Mesa, T. Rojo, T. Debaerdemaeker, D.B. Porter, H.
Stratemeier, D. Reinen, Inorg. Chem. 27 (1988) 2976.
[58] S. Chattopadhyay, G. Bocelli, A. Cantoni, A. Ghosh, Inorg. Chim. Acta 359 (2006)
4441.
[59] R. Ludwig, Angew. Chem., Int. Ed. 40 (2001) 1808.
[60] T.R. Dyke, K.M. Mack, J.S. Muenter, J. Chem. Phys. 66 (1977) 498.
[61] R.S. Fellers, C. Leforestier, L.B. Braly, M.G. Brown, R.J. Saykally, Science 284
(1999) 945.
[62] N.W. Alcock, P.R. Barker, J.M. Haider, M.J. Hannon, C.L. Painting, Z. Pikramenou,
E.A. Plummer, K. Rissanen, P. Saarenketo, Dalton Trans. (2000) 1447.
[63] A. Kutoglu, R. Allmann, J.V. Folgado, M. Atanasov, D. Reinen, Z. Naturforsch.
46b (1991) 1193.
[64] W. Henke, S. Kremer, D. Reinen, Inorg. Chem. 22 (1983) 2858.
[65] D. Maity, S. Chattopadhyay, A. Ghosh, M.G.B. Drew, G. Mukhopadhyay,
Polyhedron 28 (2009) 812.
[66] S. Chattopadhyay, M.G.B. Drew, A. Ghosh, Inorg. Chim. Acta 359 (2006) 4519.
[67] S. Chattopadhyay, M.S. Ray, S. Chaudhuri, G. Mukhopadhyay, G. Bocelli, A.
Cantoni, A. Ghosh, Inorg. Chim. Acta 359 (2006) 1367.
[68] M.A. Spackman, P.G. Byrom, Chem. Phys. Lett. 267 (1997) 215.
Reference
[1] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 9 (1996) 2563.
[2] K.D Karlin, Z. Tyeklár, Bioinorganic Chemistry of Copper, Chapman & Hall, New
York, 1993.
[3] O. Kahn, Molecular Magnetism, VCH, New York, 1993.
[4] Y.Z. Zhang, H.Y. Wei, F. Pan, Z.M. Wang, Z.D. Chen, S. Gao, Angew. Chem., Int.
Ed. 44 (2005) 5841.
[5] C. Janiak, J. Chem. Soc., Dalton Trans. (2003) 2781.
[6] B. Chen, M. Eddaoudi, T.M. Reineke, J.W. Kampf, M. O’Keeffe, O.M. Yaghi, J. Am.
Chem. Soc. 122 (2000) 11559.
[7] B. Chen, N.W. Ockwig, A.R. Millward, D.S. Contreras, O.M. Yaghi, Angew. Chem.,
Int. Ed. 44 (2005) 4745.
[8] S. Wang, J.L. Zuo, H.C. Zhou, H.J. Choi, Y. Ke, J.R. Long, X.Z. You, Angew. Chem.,
Int. Ed. 43 (2004) 5940.
[9] B. Ding, L. Yi, P. Cheng, D.Z. Liao, S.P. Yan, Inorg. Chem. 45 (2006) 5799.
[10] S. Parsons, R.C.P. Winpenny, Acc. Chem. Res. 30 (1997) 89.
[11] T.L. Hu, J.R. Li, C.S. Liu, X.S. Shi, J.N. Zhou, X.H. Bu, J. Ribas, Inorg. Chem. 45
(2006) 162.
[12] Y.S. Ma, Y. Song, W.X. Du, Y.Z. Li, L.M. Zheng, Dalton Trans. (2006) 3228.
[13] J.Y. Lu, Coord. Chem. Rev. 246 (2003) 327.
[14] X.M. Zhang, X.M. Chen, Eur. J. Inorg. Chem. (2003) 413.