6922
M. Argese et al. / Tetrahedron 63 (2007) 6915–6923
15. M€uller, R.; von Philipsborn, W.; Schleifer, L.; Aped, P.; Fuchs,
B. Tetrahedron 1991, 47, 1013–1036.
16. Sanger, I.; Lerner, H.-W.; Bolte, M. Acta Crystallogr., Sect. E
2004, 60, 1847–1848.
17. In a previous article,18 the mp 91–92 ꢀC was reported for a
decahydro-2a,4a,6a,8a-tetraazacyclopent[fg]acenaphthylene
to which the trans stereochemistry was tentatively assigned as
the compound was synthesized from trans 1,4,5,8-tetraazade-
calin under conditions, which should not have induced epime-
rization. Our data disagree, as they attribute such mp to the cis
isomer and mp 136–139 ꢀC to the trans isomer.
(ii) To take into account the effect of electron correlation
on the molecular geometry, further calculations at DFT
level were carried out on the starting models obtained
from Monte Carlo method [Section 4.4.2 (ii)]. The
Spartan’0239 software on a SGI Indigo 2 IMPACT
10000 workstation was used. Gas-phase geometry
optimizations were performed by the Becke’s Three
Parameter Hybrid functional40 using the LYP Correla-
tional functional41 [B3LYP method, 6-31G(d,p) basis
set]; again, a single point energy calculation at MP2
level [6-31G(d,p), basis set] was performed on each
resulting structure.
18. Ferrari, M.; Giovenzana, G. B.; Palmisano, G.; Sisti, M. Synth.
Commun. 2000, 30, 15–21.
19. The ratio between the cis and trans isomers, which was 1.8/1 in
the starting material, became 2.5/1 after the reduction because
in the mixtures containing 5–8 isomerization phenomena in-
duced by the alkaline pH occur, which favour the increase of
the cis compounds.1
References and notes
1. Argese, M.; Brocchetta, M.; De Miranda, M.; Paoli, P.; Perego,
F.; Rossi, P. Tetrahedron 2006, 62, 6855–6861.
2. Argese, M.; Brocchetta, M.; Manfredi, G.; Rebasti, F.; Ripa, G.
WO 01/79207, 2001.
20. Calculated on the mol (0.0126) of 6 and 8, which can theoret-
ically afford 10.
21. CrysAlis CCD, Oxford Diffraction: Version 1.171.pre23-10
beta (release 21.06.2004 CrysAlis171.NET) (compiled June
21 2004,12:00:08), Abingdon, Oxfordshire, England.
22. CrysAlis RED, Oxford Diffraction: Version 1.171.pre23-10
beta (release 21.06.2004 CrysAlis171.NET) (compiled June
21 2004,12:00:08), Abingdon, Oxfordshire, England.
23. Altomare, A.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi,
A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl.
Crystallogr. 1999, 32, 115–119.
ꢀ
3. Herve, G.; Bernard, H.; Toupet, L.; Handel, H. Eur. J. Org.
Chem. 2000, 33–35.
4. Although theoretical calculations appearing in the lit.5
and confirmed by those reported in the present article,
anticipated that 10 was ‘perfectly feasible’, it still remained
a ‘challenging synthetic target’ until the trans isomers 6 and
8 were obtained and proved valuable starting materials for its
preparation. After 9 and 10 were isolated and characterized,
we revised some alkylations performed in the past with ethanes
bearing two leaving groups in the 1,2 positions on mixtures
containing 1–4.6 The analysis of the GC chromatograms,
acquired with the same method (see Section 4) able to separate
9 and 10, showed that, apart from 9, small percentages of a peak
with the same retention time of 10 was evidenced. Obviously,
a MS–GC study should be undertaken to confirm the presence
of 10.
€
24. Sheldrick, G. M. SHELX 97; University of Gottingen:
€
Gottingen, Germany, 1997.
25. Nardelli, M. J. Appl. Crystallogr. 1995, 28, 659.
26. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
27. Rojas-Lima, S.; Farfan, N.; Santillan, R.; Castillo, D.;
Sosa-Torres, M. E.; Hopfl, M. Tetrahedron 2000, 56, 6427–
6433.
28. Biosym/MSI, San Diego, CA.
5. Galasso, V.; Chuburu, F.; Handel, H.; le Baccon, M.; Jones, D.
THEOCHEM 2002, 582, 187–193.
29. Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc. 1989,
111, 4379–4386.
30. Maestro; Schrodinger: Portland, OR, 2005.
31. (a) Kollman, P. A.; Weiner, S. J.; Case, D. A.; Singh, C.; Ghio,
C.; Alagona, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc. 1984,
106, 765–784; (b) Weiner, S.; Kollman, P. A. J. Comput. Chem.
1986, 7, 230–252.
6. Argese, M.; Ripa, G.; Scala, A.; Valle, V. WO 97/49691, 1997.
7. Trademark for sodium dihydrobis(2-methoxyethoxy)alumi-
nate. The compound is largely used for industrial purposes
because of the strong reducing power that makes it similar to
LiAlH4 but without the drawbacks of the latter, such as pyro-
phoric nature, short shelf life and limited solubility.
32. Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.
J. Am. Chem. Soc. 1990, 112, 6127–6129.
33. Ponder, J. W.; Richards, F. M. J. Comput. Chem. 1987, 8, 1016–
1024.
8. Buevich, A.; Chan, T.-M.; Wang, C. H.; McPhail, A. T.;
Ganguly, H. K. Magn. Reson. Chem. 2005, 43, 187–199.
9. (a) Karplus, M. J. Am. Chem. Soc. 1963, 85, 2870–2871; (b)
Jardetzky, C. D. J. Am. Chem. Soc. 1961, 83, 2919–2920.
10. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond, IUCr
34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,
J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck,
A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
Monographs
Publications: New York, NY, 1999.
on
Crystallography;
Oxford
Science
11. Crystal data of compounds containing the TAD core were
retrieved from the Cambridge Structural Database (CSD, v.
5.27).12 Only the non-ionic molecules having three-coordi-
nated nitrogens were considered. Among the nine retrieved
structures, two are trans-fused and seven have cis-fused rings.
In eight of these structures the d1 distance is longer than the
d2 one.
12. Allen, F. H. Acta Crystallogr. 2002, B58, 380–388.
13. Cuevas, G.; Juaristi, E. J. Am. Chem. Soc. 2002, 124, 13088–
13096.
ꢀ
14. Herve, G.; Bernard, H.; Le Bris, N.; Yaouanc, J. J.; Handel, H.;
Toupet, L. Tetrahedron Lett. 1998, 39, 6861–6864.