Scheme 1a
Lewis acid-catalyzed hetero Diels-Alder reaction,5 a Stille-
of this type (see 11a) might serve as the common synthetic
intermediate to both the papulacandins and chaetiacandin.
Our umpolung approach provides an attractive alternative
to coupling procedures which rely on tin reagents as it does
not lead to toxic or environmentally problematic byproducts.
type coupling of a stannylglycal with an aryl bromide,6 and
an aryllithium condensation with a D-glucose precursor7 or
a protected gluconolactone.8 The stereochemistry of the chiral
centers in the papulacandin D side chain was established by
Barrett9 who then completed a total synthesis of papulacandin
D, the simplest member of the series.
Synthesis of the C-arylglycoside intermediate 11a began
with the construction of the functionalized quinone 7
(Scheme 1). Regioselective benzylation (BnBr, 2.5 equiv of
NaH, THF, 25 °C, 10 h)12 of commercially available 2,3-
dihydroxybenzaldehyde (4) followed by hydride reduction
(NaBH4, MeOH) of monobenzylated aldehyde 4b afforded
alcohol 5. A second regioselective benzylation (BnBr, 3
equiv of NaH, DMSO) yielded phenol 6. Catalytic salcomine
oxidation13 (O2, N,N′-bis(salicylidene)ethylenediiminocobalt-
(II), DMF, 48 h) furnished the appropriately substituted
quinone 7.
The papulacandins and chaetiacandin are ideal candidates
for illustrating our “reverse polarity” strategy for the synthesis
of C-arylglycosides of the group I substitution pattern.10 In
this methodology, a 1,2-addition of a protected nucleophilic
glycal to an electrophilic quinone followed by reductive
aromatization of the resulting quinol affords phenols that bear
glycals in the para position.11 A glycal-substituted phenol
(5) Danishefsky, S.; Phillips, G.; Ciufolini, M. Carbohydr. Res. 1987,
171, 317-327.
(6) (a) Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 5808-
5810. (b) Friesen, R. W.; Loo, R. W.; Sturino, C. F. Can. J. Chem. 1994,
72, 1262-1272. (c) Friesen, R. W.; Daljeet, A. K. Tetrahedron Lett. 1990,
31, 6133-6136. (d) Dubois, E.; Beau, J.-M. Tetrahedron Lett. 1990, 31,
5165-5168. (e) Dubois, E.; Beau, J.-M. Carbohydr. Res. 1992, 223, 157167.
(7) Schmidt, R. R.; Frick, W. Tetrahedron 1988, 44, 7163-7169.
(8) (a) Rosenblum, S. B.; Bihovsky, R. J. Am. Chem. Soc. 1990, 112,
2746-2748. (b) Czernecki, S.; Perlat, M.-C. J. Org. Chem. 1991, 56, 6289-
6292.
Preparation of differentially protected glycal 9 began with
commercially available tri-O-acetyl-D-glucal. Removal of the
acetyl groups by methanolysis (K2CO3, MeOH, 25 °C)
followed by silylation, first with di-tert-butylsilyl ditriflate
(2,6-lutidine, DMF, -50 °C, 10 h) and then with triisopro-
(9) (a) Barrett, A. G. M.; Pena, M.; Willardsen, J. A. J. Chem. Soc.,
Chem Commun. 1995, 1145-1146, (b) Barrett, A. G. M.; Pena, M.;
Willardsen, J. A. J. Chem. Soc., Chem Commun. 1995, 1147-1148. (c)
Barrett, A. G. M.; Pena, M.; Willardsen, J. A. J. Org. Chem. 1996, 61,
1082-1100.
(11) Parker, K. A.; Coburn, C. A. J. Org. Chem. 1992, 57, 5547-5550.
(12) van Doorn, A. R.; Bos, M.; Harkema, S.; van Eerden, J.; Verboom,
W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 2371-2380.
(13) Stevens, R. V.; Angle, S. R.; Kloc, K.; Mak, K. F.; Trueblood, K.
N.; Liu, Y.-X. J. Org. Chem. 1986, 51, 4347-4353.
(10) Parker, K. A. Pure Appl. Chem. 1994, 66, 2135-2138.
498
Org. Lett., Vol. 2, No. 4, 2000