Organic Letters
Letter
(3) (a) Caine, D. In Comprehensive Organic Synthesis: Carbon-Carbon
σ-Bond Formation; Trost, B. M., Fleming, I., Eds.; Pergamon: New
York, 1991; Vol. 3. (b) Cho, C. S. J. Mol. Catal. A: Chem. 2005, 240,
bromide intermediates, and the other is the generation of α-
alkylated aryl ketones through a radical process. Thus, benzyl
alcohol is transformed into benzyl bromide in the presence of
NBS. Benzyl bromide then reacts with another benzyl alcohol
in the presence of AgSbF6 to afford dibenzyl ether via oxonium
bromide intermediates.16 The in situ generated benzyl radical
from benzyl bromide (see the SI) or dibenzyl ether in the
presence of AgSbF6 adds to the triple bond of 1-phenyl-1-
propyne regioselectively, providing a vinyl radical intermediate
I. The generation of the benzyl radical could be indirectly
verified by the observation of toluene. The vinyl radical I must
be oxidized to the vinyl cation by Ag(II). Sequential reaction
of the vinyl cation with water would produce an enol
intermediate II, which subsequently undergoes a keto−enol
tautomerism to produce the product.
In conclusion, we have developed a silver/NBS-mediated
synthesis of α-alkylated aryl ketones with a tertiary carbon
center from internal alkynes and benzyl alcohols. Thus, an
atom-economic direct functionalization of internal alkynes was
achieved by using alcohol as both a hydration and alkylation
source. Further efforts on the mechanism of the reaction are in
progress.
̈
55−60. (c) Gansauer, A.; Fielenbach, D.; Stock, C.; Geich-Gimbel, D.
Adv. Synth. Catal. 2003, 345, 1017−1030.
(4) (a) Pan, S.; Shibata, T. ACS Catal. 2013, 3, 704−712.
(b) Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712.
(c) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew.
Chem., Int. Ed. 2014, 53, 9142−9150. (d) Obora, Y. ACS Catal. 2014,
4, 3972−3981. (e) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed.
2016, 55, 862−875.
(5) (a) Guillena, G.; Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed.
2007, 46, 2358−2364. (b) Nixon, T. D.; Whittlesey, M. K.; Williams,
J. M. J. Dalton Trans. 2009, 753−765. (c) Dobereiner, G. E.;
Crabtree, R. H. Chem. Rev. 2010, 110, 681−703. (d) Guillena, G.;
̈
Ramon, D.; Yus, M. Chem. Rev. 2010, 110, 1611−1641. (e) Bahn, S.;
Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M.
ChemCatChem 2011, 3, 1853−1864.
(6) (a) Taguchi, K.; Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.;
Ishii, Y. J. Am. Chem. Soc. 2004, 126, 72−73. (b) Onodera, G.;
Nishibayashi, Y.; Uemura, S. Angew. Chem., Int. Ed. 2006, 45, 3819−
3822. (c) Kuwahara, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2012, 14,
4703−4705. (d) Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.;
Cheedrala, R. K.; Park, J. Angew. Chem., Int. Ed. 2005, 44, 6913−6915.
(e) Buil, M. L.; Esteruelas, M. A.; Herrero, J.; Izquierdo, S.; Pastor, I.
M.; Yus, M. ACS Catal. 2013, 3, 2072−2075.
ASSOCIATED CONTENT
* Supporting Information
■
(7) (a) Schlepphorst, C.; Maji, B.; Glorius, F. ACS Catal. 2016, 6,
4184−4188. (b) Frost, J. R.; Cheong, C. B.; Akhtar, W. M.; Caputo,
D. F. J.; Stevenson, N. G.; Donohoe, T. J. J. Am. Chem. Soc. 2015, 137,
15664−15667. (c) Yan, F.-X.; Zhang, M.; Wang, X.-T.; Xie, F.; Chen,
M.-M.; Jiang, H. Tetrahedron 2014, 70, 1193−1198.
(8) Ma, J.; Wang, N.; Li, F. Asian J. Org. Chem. 2014, 3, 940−947.
(9) Thuong, M. B. T.; Mann, A.; Wagner, A. Chem. Commun. 2012,
48, 434−436.
(10) (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104,
3079−3160. (b) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew.
Chem., Int. Ed. 2004, 43, 3368−3398.
(11) (a) Hartman, J. W.; Hiscox, W. C.; Jennings, P. W. J. Org.
Chem. 1993, 58, 7613−7614. (b) Jennings, P. W.; Hartman, P. J. W.;
Hiscox, W. C. Inorg. Chim. Acta 1994, 222, 317−322. (c) Hintermann,
L.; Labonne, A. Synthesis 2007, 2007, 1121−1150. (d) Tani, K.;
Kataoka, Y. In Catalytic Heterofunctionalisation; Togni, A.,
S
The Supporting Information is available free of charge on the
Experimental procedures and characterization data of
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
Grutzmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; pp 171−216.
̈
(e) Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127−
3130. (f) Israelsohn, O.; Vollhardt, K. P. C.; Blum, J. J. Mol. Catal. A:
Chem. 2002, 184, 1−10.
The authors declare no competing financial interest.
(12) Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q. Nat. Commun.
2015, 6, 7011.
ACKNOWLEDGMENTS
■
The authors thank Mr. Hawon Park (Department of
Chemistry, Seoul National University) for his initial study
using rhodium compounds as a catalyst. This work was
supported by a National Research Foundation of Korea (NRF)
grant funded by the Korean government (2014R1A5A1011165
and 2007-0093864). S.C. is a recipient of a BK21 Plus
Fellowship.
(13) (a) Miura, K.; Yamamoto, K.; Yamanobe, A.; Ito, K.; Kinoshita,
H.; Ichikawa, J.; Hosomi, A. Chem. Lett. 2010, 39, 766−767.
(b) Yadav, J. S.; Subba Reddy, B. V.; Vishnumurthy, P. Tetrahedron
Lett. 2008, 49, 4498−4500.
(14) Kaku, H.; Imai, T.; Kondo, R.; Mamba, S.; Watanabe, Y.; Inai,
M.; Nishii, T.; Horikawa, M.; Tsunoda, T. Eur. J. Org. Chem. 2013,
2013, 8208−8213.
(15) Malpani, Y. R.; Biswas, B. K.; Han, H. S.; Jung, Y.-S.; Han, S. B.
Org. Lett. 2018, 20, 1693−1697.
REFERENCES
■
(16) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Green Chem.
2015, 17, 2774−2779.
(1) (a) Franck, H. G.; Stadelhofer, J. W. Industrial Aromatic
Chemistry; Springer: Berlin, 1988. (b) Surburg, H.; Panten, J. Common
Fragrance and Flavor Materials, 5th ed.; Wiley-VCH: Weinheim, 2006.
(c) Dieter, R. K. Tetrahedron 1999, 55, 4177−4236. (d) Wang, X. J.;
Zhang, L.; Sun, X.; Xu, Y.; Krishnamurthy, D.; Senanayake, C. H. Org.
Lett. 2005, 7, 5593−5595. (e) Batt, D. G.; Goodman, R.; Jones, D. G.;
Kerr, J. S.; Mantegna, L. R.; McAllister, C.; Newton, R. C.; Nurnberg,
S.; Welch, P. K.; Covington, M. B. J. Med. Chem. 1993, 36, 1434−
1442.
(2) (a) Xu, Z.-F.; Cai, C.-X.; Liu, J.-T. Org. Lett. 2013, 15, 2096−
2099. (b) Huang, L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K.
Angew. Chem., Int. Ed. 2016, 55, 4808−4813.
D
Org. Lett. XXXX, XXX, XXX−XXX