less frequently used sodium hypophosphite to synthesize copper
nanoparticles with different morphologies and mean particle
sizes and distributions through the employment of a chemical
reduction method. Previous reports of zerovalent nanocopper
preparation have either failed to show long-term surface stability
or have required the introduction of particles likely to result in
diffusion limitations in catalytic processes. However, in this work
we attempt colloid synthesis in alcohol treated with various co-
reducing agents. While syntheses using N2H4·H2O and NaBH4
meet with only limited success, we are able to demonstrate that by
deploying NaH2PO2·H2O in the presence of PVP (Mav 40 000) it
is possible to achieve pure Cu nanoparticles that demonstrate a
mean size distribution of 9.6 1.0 nm and which exhibit stability
(according to PXRD and XPS studies) towards oxidation for
several months (sample 11 in Table 1). These data promise to be
significant to the future development of novel catalysts for a variety
of applications. Hence, for example, PVP-coated Cu(0) particles
prepared using hypophosphite demonstrate potential as catalysts
in the Ullmann-type coupling of 4-chloropyridine with phenol
to yield 4-phenoxypyridine, with excellent results having been
achieved in terms of product yield and selectivity and, importantly,
catalyst stability.43 Accordingly, nanoparticles prepared as per
sample 11 could be reused without a significant decline in
activity over at least five catalytic cycles, before, it is assumed,
they eventually underwent surface oxide formation. XPS studies
which aim to verify this view by clarifying how the nanocatalyst
evolves during testing are presently being initiated and will be
reported in due course. Further refinements to the etherification
reactions to which oxidatively stable nanoscopic copper have been
applied are envisaged, aimed at the demonstration of continuous
flow processes. Moreover, we are seeking to develop the use
of oxidatively stable nanocopper as catalysts in selective C–H
bond activation processes (e.g., the Michael addition of active
methylenes or terminal alkyne activation for selective addition
to electron-poor alkenes). In conjunction with DFT and Monte
Carlo modelling of copper-support interactions, long-term studies
will target the heterogenization of stable copper catalysts and
copper-based bimetallic colloids.
6 I. Haas, S. Shanmugam and A. Gedanken, J. Phys. Chem. B, 2006, 110,
16947–16952.
7 Y. Zhang, F. L. Y. Lam, X. J. Hu and Z. F. Yan, Chin. Sci. Bull., 2006,
51, 2662–2668.
8 J. Lee, D. K. Kim and W. Kang, Bull. Korean Chem. Soc, 2006, 27,
1869–1872.
9 P. V. Kazakevich, V. V. Voronov, A. V. Simakin and G. A. Shafeev,
Quantum Electron., 2004, 34, 951–956.
10 G. R. Dey, Radiat. Phys. Chem, 2005, 74, 172–184.
11 S. I. Bin Ahmad, M. S. B. Ahmad and S. Bin Radiman, Nanosci.
Nanotechnol., 2009, 1136, 186–190.
12 M. P. Pileni and I. Lisiecki, Colloids Surf., A, 1993, 80, 63–68.
13 H. Ohde, F. Hunt and C. M. Wai, Chem. Mater., 2001, 13,
4130–4135.
14 I. Lisiecki, F. Billoudet and M. P. Pileni, J. Mol. Liq., 1997, 72, 251–261.
15 I. Lisiecki, M. Bjorling, L. Motte, B. Ninham and M. P. Pileni,
Langmuir, 1995, 11, 2385–2392.
16 A. Sarkar, T. Mukherjee and S. Kapoor, J. Phys. Chem. C, 2008, 112,
3334–3340.
17 H. X. Zhang, U. Siegert, R. Liu and W. B. Cai, Nanoscale Res. Lett.,
2009, 4, 705–708.
18 Y. Kobayashi, S. Ishida, K. Ihara, Y. Yasuda, T. Morita and S. Yamada,
Colloid Polym. Sci., 2009, 287, 877–880.
19 W. Yu, H. Q. Xie, L. F. Chen, Y. Li and C. Zhang, Nanoscale Res. Lett.,
2009, 4, 465–470.
20 P. Kanninen, C. Johans, J. Merta and K. Kontturi, J. Colloid Interface
Sci., 2008, 318, 88–95.
21 A. Roldan, F. Vines, F. Illas, J. M. Ricart and K. M. Neyman, Theor.
Chem. Acc., 2008, 120, 565–573.
22 G. Jones, T. Bligaard, F. Abild-Pedersen and J. K. Nørskov, J. Phys.:
Condens. Matter, 2008, 20, 064239 (6 pages).
23 F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sorensen, C. H.
Christensen and J. K. Norskov, Science, 2008, 320, 1320–1322.
24 M. Aslam, G. Gopakumar, T. L. Shoba, I. S. Mulla, K. Vijayamohanan,
S. K. Kulkarni, J. Urban and W. Vogel, J. Colloid Interface Sci., 2002,
255, 79–90.
25 K.-H. Meiwes-Broer, Metal clusters at surfaces: structure, quantum
properties, physical chemistry, Springer, Berlin, New York, 2000.
26 B. Fultz and J. M. Howe, Transmission electron microscopy and
diffractometry of materials, 3rd edn, Springer, Berlin, New York,
2008.
27 J. G. Yang, Y. L. Zhou, T. Okamoto, R. Ichino and M. Okido, Surf.
Eng., 2007, 23, 448–452.
28 M. Tomonari, K. Ida, H. Yamashita and T. Yonezawa, J. Nanosci.
Nanotechnol., 2008, 8, 2468–2471.
29 M. Valle-Orta, D. Diaz, P. Santiago-Jacinto, A. Va´zquez-Olmos and E.
Reguera, J. Phys. Chem. B, 2008, 112, 14427–14434.
30 N. Toshima and T. Yonezawa, New J. Chem., 1998, 22, 1179–1201.
31 O. P. H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov and R. M.
Lambert, J. Catal., 2005, 236, 401–404.
32 V. K. LaMer, Ind. Eng. Chem., 1952, 44, 1270–1277.
33 B. Wiley, Y. Sun, B. Mayers and Y. Xia, Chem.–Eur. J., 2005, 11, 454–
463.
Acknowledgements
We thank the European Commission (NOE EXCELL NMP3-
CT-2005-515703) and the Royal Society (International Joint
Project 2008/R4) for financial support. We also acknowledge
the UK EPSRC (EP/F019823/1) and Dr D. J. Morgan (Cardiff
University) for XPS access. Thanks go to Prof. J. Schouten and
Dr E. Rebrov (Laboratory of Chemical Reactor Engineering,
Eindhoven University of Technology) for scientific discussions.
34 T. Teranishi and N. Toshima, in Catalysis and electrocatalysis
at nanoparticle surfaces, ed. A. Wieckowski, E. R. Savinova and
C. G. Vayenas, Marcel Dekker, New York, 1st edn, 2003, pp. 379–408.
35 T. Teranishi, M. Hosoe, T. Tanaka and M. Miyake, J. Phys. Chem. B,
1999, 103, 3818–3827.
36 A. Filankembo and M. P. Pileni, Appl. Surf. Sci., 2000, 164,
260–267.
37 T. D. Daff, D. Costa, I. Lisiecki and N. H. de Leeuw, J. Phys. Chem. C,
2009, 113, 15714–15722.
38 B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim and J. S. Kim, J. Colloid
Interface Sci., 2007, 311, 417–424.
39 E. Diaz, R. B. Valenciano and I. A. Katime, J. Appl. Polym. Sci., 2004,
93, 1512–1518.
40 V. B. Chernogorenko and S. T. Tasybaeva, Russ. J. Appl. Chem, 1995,
68, 461–464.
Notes and references
1 R. Ferrando, J. Jellinek and R. L. Johnston, Chem. Rev., 2008, 108,
845–910.
2 G. Schmid, M. Baumle, M. Geerkens, I. Helm, C. Osemann and T.
Sawitowski, Chem. Soc. Rev., 1999, 28, 179–185.
3 R. J. White, R. Luque, V. L. Budarin, J. H. Clark and D. J. Macquarrie,
Chem. Soc. Rev., 2009, 38, 481–494.
4 M. Salavati-Niasari, F. Davar and N. Mir, Polyhedron, 2008, 27, 3514–
3518.
5 Y. H. Kim, D. K. Lee, B. G. Jo, J. H. Jeong and Y. S. Kang, Colloids
Surf., A, 2006, 284, 364–368.
41 C. H. Chen, T. Yamaguchi, K. Sugawara and K. Koga, J. Phys. Chem.
B, 2005, 109, 20669–20672.
ˇ
ˇ
42 Z. Crljen, P. Lazic´, D. Sokcˇevicˇ and R. Brako, Phys. Rev. B: Condens.
Matter Mater. Phys., 2003, 68, 195411 (8 pages).
43 F. Benaskar, V. Engels, N. Patil, E. V. Rebrov, J. Meuldijk, V. Hessel,
L. A. Hulshof, D. A. Jefferson, J. C. Schouten and A. E. H. Wheatley,
Tetrahedron Lett., 2010, 51, 248–251.
6502 | Dalton Trans., 2010, 39, 6496–6502
This journal is
The Royal Society of Chemistry 2010
©