Page 3 of 9
Journal of the American Chemical Society
sheets,22 is unlikely to affect this equilibrium decisively. In contrast,
S. B. Chem. Commun. 2011, 47, 2342-2344. (m) Erdmann, R. S.;
n→π* interactions are common in α-helices but not β-sheets,6b and
thus could play a critical role in the maintenance of protein home-
ostasis. In addition, our finding that the n→π* interaction between
two thioamides is 3-fold stronger than that between two amides
(Figure 3B) encourages efforts to exploit thioamides to enhance
conformational stability in peptides and proteins.23,24 Finally, as
these interactions are not included in conventional force fields, we
argue that accounting for the n→π* interaction could improve the
accuracy of computational investigations of proteins.
Wennemers, H. J. Am. Chem. Soc. 2012, 134, 17117-17124.
(6) (a) Gao, J.; Kelly, J. W. Protein Sci. 2008, 17, 1096-1101. (b) Bartlett,
G. J.; Choudhary, A.; Raines, R. T.; Woolfson, D. N. Nat. Chem. Biol.
2010, 6, 615-620. (c) Fufezan, C. Proteins 2010, 78, 2831-2838.
(7) (a) Gorske, B. C.; Bastian, B. L.; Geske, G. D.; Blackwell, H. E. J. Am.
Chem. Soc. 2007, 129, 8928-8929. (b) Gorske, B. C.; Stringer, J. R.;
Bastian, B. L.; Fowler, S. A.; Blackwell, H. E. J. Am. Chem. Soc. 2009,
131, 16555-16567.
(8) Choudhary, A.; Kamer, K. J.; Powner, M. W.; Sutherland, J. D.;
Raines, R. T. ACS Chem. Biol. 2010, 5, 655-657.
(9) Choudhary, A.; Gandla, D.; Krow, G. R.; Raines, R. T. J. Am. Chem.
Soc. 2009, 131, 7244–7246.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
◼ ASSOCIATED CONTENT
(10) (a) DeTar, D. F.; Luthra, N. P. J. Am. Chem. Soc. 1977, 99, 1232-1244.
(b) Renner, C.; Alefelder, S.; Bae, J. H.; Budisa, N.; Huber, R.;
Moroder, L. Angew. Chem. Int. Ed. 2001, 40, 923-925. (c) Williams, K.
R.; Adhyaru, B.; German, I.; Alvarez, E. J. Chem. Ed. 2002, 79, 372-
373. (d) Taylor, C. M.; Hardre, R.; Edwards, P. J. B.; Park, J. H. Org.
Lett. 2004, 5, 4413-4416. (e) Taylor, C. M.; Handre, R.; Edwards, P. J.
B. J. Org. Chem. 2005, 70, 1306-1315. (f) Meng, H. Y.; Thomas, K. M.;
Lee, A. E.; Zondlo, N. J. Biopolymers 2006, 84, 192-204. (g) Cadamuro,
S. A.; Reichold, R.; Kusebauch, U.; Musiol, H. J.; Renner, C.; Tavan,
P.; Moroder, L. Angew. Chem. Int. Ed. 2008, 47, 2143-2146. (h) Zhang,
K.; Teklebrhan, R. B.; Schreckenbach, G.; Wetmore, S.; Schweizer, F.
J. Org. Chem. 2009, 74, 3735-3743. (i) Ivanova, G.; Yakimova, B.;
Angelova, S.; Stoineva, I.; Enchev, V. J. Mol. Struct. 2010, 975, 330-
334. (j) Cipolla, L.; Airoldi, C.; Bini, D.; Gregori, M.; Marcelo, F.;
Jiménez-Barbero, J.; Nicotra, F. Eur. J. Org. Chem. 2011, 2011, 128-
136. (k) Erdmann, R. S.; Wennemers, H. Org. Biomol. Chem. 2012, 10,
1982-1986. (l) Torbeev, V. Y.; Fumi, E.; Ebert, M.-O.; Schweizer, W.
B.; Hilvert, D. Helv. Chim. Acta 2012, 95, 2411-2420. (m) Lee, K. K.;
Park, K. H.; Joo, C.; Kwon, H. J.; Jeon, J.; Jung, H. I.; Park, S.; Han,
H.; Cho, M. J. Phys. Chem. B 2012, 116, 5097-5110. (n) Pandey, A. K.;
Naduthambi, D.; Thomas, K. M.; Zondlo, N. J. J. Am. Chem. Soc.
2013, 135, 4333-4363.
(11) (a) Higashijima, T.; Tasumi, M.; Miyazawa, T. Biopolymers 1977, 16,
1259-1270. (b) Liang, G.-B.; Rito, C. J.; Gellman, S. H. Biopolymers
1992, 32, 293-301. (c) Improta, R.; Benzi, C.; Barone, V. J. Am. Chem.
Soc. 2001, 123, 12568-12577. (d) Benzi, C.; Improta, R.; Scalmani, G.;
Barone, V. J. Comput. Chem. 2002, 23, 341-350.
(12) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-
926.
(13) Jakobsche, C. E.; Choudhary, A.; Miller, S. J.; Raines, R. T. J. Am.
Chem. Soc. 2010, 132, 6651–6653.
Supporting Information
Synthetic and analytical procedures, and computational data on
compounds 3–6. This material is available free of charge via the
◼ AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
◼ ACKNOWLEDGMENT
We are grateful to Brian Dolinar (University of Wisconsin–
Madison) for technical assistance and to Amit Chouhdary (Harvard
University) and Grant Krow (Temple University) for contributive
discussions. R.W.N. was supported by NIH Biotechnology Train-
ing Grant T32 GM008349. This work was Supported by grants
R01 AR044276 (NIH) and CHE-1124944 (NSF). High-
performance computing was supported by grant CHE-0840494
(NSF).
◼ REFERENCES
(1) (a) Anfinsen, C. B. Science 1973, 181, 223-230. (b) Dill, K. A.
Biochemistry 1990, 29, 7133-7155.
(14) Choudhary, A.; Raines, R. T. ChemBioChem 2011, 12, 1801-1807.
(15) Choudhary, A.; Pua, K. H.; Raines, R. T. Amino Acids 2011, 41, 181-
186.
(16) Shoulders, M. D.; Raines, R. T. Annu. Rev. Biochem. 2009, 78, 929-
958.
(2) (a) Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.;
Raines, R. T. J. Am. Chem. Soc. 2001, 123, 777-778. (b) DeRider, M.
L.; Wilkens, S. J.; Waddell, M. J.; Bretscher, L. E.; Weinhold, F.;
Raines, R. T.; Markley, J. L. J. Am. Chem. Soc. 2002, 124, 2497-2505.
(c) Hinderaker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188-1194.
(d) Hodges, J. A.; Raines, R. T. Org. Lett. 2006, 8, 4695-4697.
(3) Burgi, H. B.; Dunitz, J. D.; Shefter, E. Acta Crystallogr. 1974, B30,
1517-1527.
(17) Guzei, I. A.; Choudhary, A.; Raines, R. T. Acta Crystallogr. 2013,
E69,o805-o806.
(18) (a) Paulini, R.; Muller, K.; Diederich, F. Angew. Chem. Int. Ed. 2005,
44, 1788-1805. (b) Fischer, F. R.; Wood, P. A.; Allen, F. H.;
Diederich, F. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17290-17294. (c)
Worley, B.; Richard, G.; Harbinson, G. S.; Powers, R. PLoS One 2012,
7, e42075.
(19) Lide, D. R. In CRC Handbook of Chemistry & Physics; 93rd ed.; CRC
Press: Boca Raton, FL, 2013.
(20) (a) Wiberg, K. B.; Rablen, P. R. J. Am. Chem. Soc. 1995, 117, 2201-
2209. (b) Wiberg, K. B.; Rush, D. J. J. Am. Chem. Soc. 2001, 123,
2038-2046.
(21) (a) Chiti, F.; Stefani, M.; Taddei, N.; Ramoni, G.; Dobson, C. M.
Nature 2003, 424, 805-808. (b) Chiti, F.; Dobson, C. M. Annu. Rev.
Biochem. 2006, 75, 333-366. (c) Eisenberg, D.; Jucker, M. Cell 2012,
148, 1188-1203.
(22) (a) Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl. Acad. Sci. USA
1951, 37, 205-211. (b) Pauling, L.; Corey, R. B. Proc. Natl. Acad. Sci.
USA 1951, 37, 251-256. (c) Fleming, P. J.; Rose, G. D. Protein Sci.
2005, 14, 1911-1917.
(4) (a) Choudhary, A.; Kamer, K. J.; Raines, R. T. J. Org. Chem. 2011, 76,
7933-7937. (b) Kamer, K. J.; Choudhary, A.; Raines, R. T. J. Org.
Chem. 2013, 78, 2099-2103.
(5) (a) Jenkins, C. L.; Lin, G.; Duo, J.; Rapolu, D.; Guzei, I. A.; Raines, R.
T.; Krow, G. R. J. Org. Chem. 2004, 69, 8565-8573. (b) Horng, J. C.;
Raines, R. T. Protein Sci. 2006, 15, 74-83. (c) Sonntag, L.-S.; Schweizer,
S.; Ochsenfeld, C.; Wennemers, H. J. Am. Chem. Soc. 2006, 128,
14697-14703. (d) Kumin, M.; Sonntag, L.-S.; Wennemers, H. J. Am.
Chem. Soc. 2007, 129, 466-467. (e) Shoulders, M. D.; Guzei, I. A.;
Raines, R. T. Biopolymers 2008, 89, 443-454. (f) Dai, N.; Wang, X. J.;
Etzkorn, F. A. J. Am. Chem. Soc. 2008, 130, 5396-5397. (g) Chiang, Y.
C.; Lin, Y. J.; Horng, J. C. Protein Sci. 2009, 18, 1967-1977. (h) Dai,
N.; Etzkorn, F. A. J. Am. Chem. Soc. 2009, 131, 13728-13732. (i)
Kuemin, M.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H. J. Am.
Chem. Soc. 2009, 131, 15474-15482. (j) Kuemin, M.; Nagel, Y. A.;
Schweizer, S.; Monnard, F. W.; Ochsenfeld, C.; Wennemers, H.
Angew. Chem. Int. Ed. 2010, 49, 6324-6327. (k) Choudhary, A.;
Raines, R. T. Protein Sci. 2011, 20, 1077-1081. (l) Pollock, S. B.; Kent,
(23) For example, the absolute values of the φ and ψ dihedral angles for 6-
endo (–77°,161°) and 6-exo (70°,149°) are similar to those for proline
residues in the Xaa (75°,–164°) and Yaa (–60°,152) position,
ACS Paragon Plus Environment