selectivity.7b Two chiral metal complex catalyzed asymmetric
Michael additions of nitroalkanes to nitroalkenes have been
reported by Du using Zn(II)/bis(oxazoline) or bis(thiozoline)9
and Feng using La(III)/N,N′-dioxide complexes,10 respec-
tively. Wang’s seminal work showed that organocatalysis
also provides a possible approach to this challenging reaction
despite the lower reactivity of the cinchona alkaloid catalysts
employed.11 Despite these important contributions, the direct
asymmetric Michael addition of nitroalkanes to nitroalkenes
is still in its infancy and the development of a new and
efficient catalytic system showing high reactivity and enan-
tio-/diastereoselectivity for a broad scope of substrates is still
in great demand. Herein, we report a highly syn-selective
(up to 98:2) and excellent enantioselective (up to 99% ee)
Michael addition of nitroalkanes to nitroalkenes catalyzed
by bifunctional amine-thiourea bearing multiple hydrogen-
bonding donors (Figure 1).12,13
results are summarized in Table 1. It is noteworthy that only
2.3:1 syn-selectivity and 74% enantioselectivity were achieved
for 3a by using the modified cinchona alkaloid organocatalyst
in 6 days.7a,11 To our delight, the reaction was finished in
8-12 h at room temperature with those fine-tunable orga-
nocatalysts 1a-d, and 1d was revealed as the best catalyst
in terms of diastereoselectivity and enantioselectivity (Table
1, entries 1-4). This finding is in agreement with our recently
developed amine-thiourea-catalyzed nitro-Mannich reaction
and Michael addition reaction.12 No addition product was
observed when using methylated 1e as the catalyst, which
further indicates that the multiple hydrogen bonding donors
play a significant role in this efficient system (Table 1, entry
5). A study of reaction with 1d in various solvents identified
PhMe and ether as suitable alternatives to DCM (Table 1,
entries 6-12). Interestingly, this Michael addition reaction
could also be carried out under neat conditions affording 78:
22 dr and 89% ee (Table 1, entry 13). Reducing the
temperature to -30 °C in DCM led to full conversion with
98:2 diastereoselectivity and 97% ee for the major syn-
diastereomer within 16 h (Table 1, entry 14). A comparable
result (96:4 dr and 97% ee) was still achieved even when
catalyst loading was reduced to 5 mol % (Table 1, entry
15). The current catalysis demonstrated significant improve-
ments over the previous reported catalytic systems that gave
lower diastereo-/enantioselectivity or required longer reaction
time (2-6 d).7a,9-11
The asymmetric Michael addition of nitroethane 3a to
various nitroolefins 2 in the presence of organocatalyst 1d
was investigated under the optimized experimental condi-
tions. As shown in Table 2, a wide array of aromatic
nitroolefins 2a-j, which bear electron-rich, electron-neutral,
or electron-withdrawing groups, reacted smoothly with
nitroethane 3a to afford the corresponding product 4aa-ja
in good yields and with high levels of diastereoselectivity
(84:16-98:2) and enantioselectivity (94-99% ee) (Table 2,
entries 1-10). It appears that the position and the electronic
Figure 1. Amine-thioureas bearing multiple hydrogen-bonding
donors.
Our initial investigation began with the reaction of
nitroethane 3a with nitroolefin 2a, and the representative
(7) During the preparation of this paper, Wulff et al. presented the direct
asymmetric Michael addition of nitropropane or nitrobutane to aromatic
nitroalkenes with bifunctional DMAP-thiourea catalyst; however, only 57:
43 diastereoselectivity and 62% ee was achieved for nitroethane. See: (a)
Rabalakos, C.; Wulff, W. D. J. Am. Chem. Soc. 2008, 130, 5452. Maruoka
et al. reported that N-spiro chiral ammonium bifluorides catalyzed indirect
Michael addition with performed silyl nitronates; see: (b) Ooi, T.; Takada,
S.; Doda, K.; Maruoka, K Angew. Chem., Int. Ed. 2006, 45, 7606.
(8) (a) Escribano, F. C.; Alca´ntara, M. D.; Gomez-Sa´nchez, A. Tetra-
hedron Lett. 1988, 29, 6001. (b) Axenrod, T.; Watnick, C.; Yazdekhasti,
H.; Dave, P. R. J. Org. Chem. 1995, 60, 1959. (c) Marchand, A. P.;
Rajagopal, D.; Bott, S. G.; Archibold, T. G. J. Org. Chem. 1995, 60, 4943.
(d) Wade, P. A.; Dailey, W. P.; Carroll, P. J. J. Am. Chem. Soc. 1987, 109,
5452.
(9) Lu, S. F.; Du, D. M.; Xu, J.; Zhang, S. W. J. Am. Chem. Soc. 2006,
128, 7418.
(10) Yang, X.; Zhou, X.; Lin, L.; Chang, L.; Liu, X.; Feng, X. Angew.
Chem., Int. Ed. 2008, 47, 7079.
(11) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Wang, W. AdV. Synth. Catal.
2006, 348, 2047.
(12) (a) Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Wu, X.-J. Chem.
Commun. 2008, 1431. (b) Wang, C.-J.; Dong, X.-Q.; Zhang, Z.-H.; Xue,
Z.-Y.; Teng, H.-L. J. Am. Chem. Soc. 2008, 130, 8606. (c) Zhang, Z.-H.;
Dong, X.-Q.; Chen, D.; Wang, C.-J. Chem.sEur. J. 2008, 14, 8780.
(13) For other kind of organocatalysts having multiple hydrogen-bonding
donors, see:(a) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew.
Chem., Int. Ed. 2005, 44, 6576. (b) Sohtome, Y.; Tanatani, A.; Hashimoto,
Y.; Nagasawa, K. Tetrahedron Lett. 2004, 45, 5589. (c) Berkessel, A.;
Roland, K.; Neudorfl, J. M. Org. Lett. 2006, 8, 4195.
(4) (a) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem.
ReV. 2005, 105, 933. (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed.
2004, 4, 3–5138.
(5) (a) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman,
B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105. (b) Li, H.; Wang,
Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906. (c) Tsogoeva,
S.; Wei, B.; S. Chem. Commun. 2006, 1451. (d) Huang, H.; Jacobsen, E. N.
J. Am. Chem. Soc. 2006, 128, 7170. (e) Yalalov, D. A.; Tsogoeva, S. B.;
Schmatz, S. AdV. Synth. Catal. 2006, 348, 826. (f) Lalonde, M. P.; Chen,
Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366. (g) Wei, S.;
Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Catal. Today 2007, 121, 151.
(h) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367.
(i) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481. (j) Okino,
T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (k)
Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem.
Soc. 2005, 127, 119. (l) Lubkoll, J.; Wennemers, H. Angew. Chem., Int.
Ed. 2007, 46, 6841. (m) Dixon, D. J.; R. Richardson, D Synlett 2006, 81.
(n) Liu, Y.-K.; Liu, H.; Du, W.; Yue, L.; Chen, Y.-C. Chem.sEur. J. 2008,
14, 9873. (o) Xue, D.; Chen, Y.-C.; Wang, Q.-W.; Cun, L.-F.; Zhu, J.;
Deng, J.-G. Org. Lett. 2005, 7, 5293. (p) Cao, Y.-J.; Lu, H.-H.; Lai, Y.-Y.;
Lu, L.-Q.; Xiao, W.-J. Synthesis 2006, 3795. (q) Cao, Y.-J.; Lai, Y.-Y.;
Wang, X.; Li, Y.-J.; Xiao, W.-J. Tetrahedron Lett. 2007, 48, 21.
(6) (a) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH:
New York, 2001. For a recent example of facile transformations of optically
active organonitro compounds, see: (b) Czekelius, C.; Carreira, E. M. Angew.
Chem., Int. Ed. 2005, 44, 612.
1266
Org. Lett., Vol. 11, No. 6, 2009