Fluorine-Sacrificial Cyclizations as an Access to 5-Fluoropyrazoles
FULL PAPER
1
Methyl 5-p-Anisidino-1-phenyl-1H-pyrazole-4-carboxylate (8b):
(58%). – H NMR: δ ϭ 8.04 (br. s, 1 H), 7.66 (dd, J ϭ 7.9, 1.5 Hz,
Analogously, by using p-anisidine, product 8b was prepared and 2 H), 7.5 (m, 4 H), 7.4 (m, 2 H), 6.9 (m, 2 H), 3.81 (s, 3 H). – 19F
isolated; m.p. 94–96 °C; 1.2 g (74%). – 1H NMR: δ ϭ 7.93 (s, 1 H),
NMR: δ ϭ –127.5 (br. s). – MS (CI): m/z (%) ϭ 329 (1) [Mϩ
ϩ
7.84 (br. s, 1 H), 7.36 (d, J ϭ 7.4 Hz, 2 H), 7.16 (t, J ϭ 7.4 Hz, 2 NH4], 312 (100) [Mϩ ϩ 1], 311 (23) [Mϩ], 189 (15). – C17H14FN3O2
H), 7.10 (t, J ϭ 7.4 Hz, 1 H), 6.65 (d, J ϭ 9.0 Hz, 2 H), 6.52 (d, (311.32): calcd. C 65.59, H 4.53; found C 65.22, H 4.53.
J ϭ 9.0 Hz, 2 H), 3.86 (s, 3 H), 3.65 (s, 3 H). – MS (CI): m/z (%) ϭ
324 (100) [Mϩ ϩ 1], 323 (25) [Mϩ], 291 (33). – C18H17N3O2
(323.35): calcd. C 66.86, H 5.30; found C 67.05, H 5.00.
Acknowledgments
This work was financially supported by the Schweizerische Na-
tionalfond zur Förderung der wissenschaftlichen Forschung, Bern
(grant 20-49’307-96).
5-Fluoro-1-phenyl-1H-pyrazole-4-carboxylic Acid (9): The ester 7a
(4.4 g, 20 mmol) was dissolved in a 3:1 (v/v) mixture (200 mL) of
tetrahydrofuran and water and lithium hydroxide monohydrate
(0.84 g, 20 mmol) was added portionwise. The solution was kept at
25 °C for 2 h and then acidified with 2 hydrochloric acid to pH
[1]
´
M. Schlosser, B. Spahic, C. Tarchini, Angew. Chem. 1975, 87,
1. The thick white precipitate thus formed was collected by filtra-
tion, dried, and crystallized in the form of tiny needles from a mix-
ture of ethyl acetate and hexanes; m.p. 166–167 °C; 2.8 g (68%). –
1H NMR: δ ϭ 8.02 (d, J ϭ 2.5 Hz, 1 H), 7.65 (d, J ϭ 7.9 Hz, 2
H), 7.53 (t, J ϭ 7.9 Hz, 2 H), 7.43 (t, J ϭ 7.9 Hz, 1 H). – 19F
NMR: δ ϭ –121.6 (m). – MS (CI): m/z (%) ϭ 224 (3) [Mϩ ϩ NH4],
207 (100) [Mϩ ϩ 1], 206 (46) [Mϩ]. – C10H7FN2O2 (206.18): calcd.
C 58.26, H 3.42; found C 57.99, H 3.42.
346–347; Angew. Chem. Int. Ed. Engl. 1975, 14, 365–366.
[2]
[3]
´
M. Schlosser, B. Spahic, Helv. Chim. Acta 1980, 63, 1223–1235.
M. Schlosser, R. Dahan, S. Cottens, Helv. Chim. Acta 1984,
67, 284–288.
[4]
´
B. Spahic, T. M. T. Truong-Nguyen, M. Schlosser, Helv. Chim.
Acta 1980, 63, 1236–1241.
[5]
[6]
´
B. Spahic, M. Schlosser, Helv. Chim. Acta 1980, 63, 1242–1256.
K. Kondo, S. Cottens, M. Schlosser, Chem. Lett. 1984, 2149–
2156.
[7]
G.-q. Shi, S. Cottens, S. A. Shiba, M. Schlosser, Tetrahedron
1992, 48, 10569–10574.
G.-q. Shi, M. Schlosser, Tetrahedron 1993, 49, 1445–1456.
G.-q. Shi, Q. Wang, M. Schlosser, Tetrahedron 1996, 52,
4403–4410.
Y. Bessiere, D. Ngoc-Hue Savary, M. Schlosser, Helv. Chim.
Acta 1977, 60, 1739–1746.
T. M. T. Truong-Nguyen, H. Togo, M. Schlosser, Tetrahedron
1994, 50, 7827–7836.
S. N. Gosh, M. Schlosser, J. Fluorine Chem. 1994, 67, 53–56.
G.-q. Shi, S. Takagishi, M. Schlosser, Tetrahedron 1994, 50,
1129–1134.
5-Fluoro-N-1-diphenyl-1H-pyrazole-4-carboxamide (10a): (1-Benzo-
triazolyloxy)tripyrrolidinophosphonium hexafluorophosphate[44]
(2.6 g, 5.0 mmol), aniline hydrochloride (0.71 g, 5.5 mmol), and di-
isopropylethylamine (2.1 mL, 1.6 g, 13 mmol) were successively ad-
ded to a solution of the 5-fluoropyrazole acid 9 (1.0 g, 5.0 mmol)
in dichloromethane (25 mL). The resulting heterogeneous mixture
was stirred for 2 h at 25 °C, then the solvent was evaporated and the
crude product was purified by chromatography on silica by using a
1:4 (v/v) mixture of ethyl acetate and hexanes as eluent; m.p. 153–
[8]
[9]
[10]
[11]
`
ˆ
[12]
[13]
1
155 °C (from hexanes); 0.58 g (41%). – H NMR: δ ϭ 8.06 (d, J ϭ
[14]
2.7 Hz, 1 H), 7.7 (m, 2 H), 7.60 (d, J ϭ 7.4 Hz, 2 H), 7.54 (br. s, 1
H), 7.53 (t, J ϭ 7.9 Hz, 2 H), 7.43 (t, J ϭ 7.4 Hz, 1 H), 7.37 (t,
J ϭ 7.9 Hz, 2 H), 7.15 (t, J ϭ 7.4 Hz, 1 H). – 19F NMR: δ ϭ –
127.3 (br. s). – MS (CI): m/z (%) ϭ 299 (5) [Mϩ ϩ NH4], 282 (100)
[Mϩ ϩ 1], 281 (15) [Mϩ], 189 (16). – C16H12FN3O (281.29): calcd.
C 68.32, H 4.30; found C 68.35, H 4.20.
U. Mävers, F. Berruex, M. Schlosser, Tetrahedron 1996, 52,
3223–3228.
[15]
[16]
[17]
M. Schlosser, H. Keller, Liebigs Ann. 1995, 1587–1589.
H. Keller, M. Schlosser, Tetrahedron 1996, 52, 4637–4644.
M. Schlosser, H. Keller, S.-i. Sumida, J. Yang, Tetrahedron Lett.
1997, 38, 8523–8526.
A. Pasetti, F. Tarli, D. Sianesi, Gazz. Chim. Ital. 1968, 98, 277–
289; Chem. Abstr. 1968, 69, 77016s.
I. L. Knunyants, V. V. Shokina, V. V. Tyuleneva, Dokl. Akad.
Nauk SSSR 1966, 169, 594–597; Dokl. Chem. (Engl. Transl.)
1966, 169, 722–725; Chem. Abstr. 1966, 65, 15218e.
G. Wittig, M. Schlosser, Chem. Ber. 1961, 94, 1373–1383.
M. El-Khoury, Q. Wang, M. Schlosser, Tetrahedron Lett. 1996,
37, 9047–9048.
R. G. Jones, J. Am. Chem. Soc. 1947, 69, 2346–2350.
R. Belcher, M. Stacey, A. Sykes, J. C. Tatlow, J. Chem. Soc.
1954, 3846–3851.
Y. Kobayashi, I. Kumadaki, Y. Hanzawa, M. Mimura, Chem.
Pharm. Bull. 1975, 23, 636–639.
R. L. Wydra, S. E. Patterson, L. Strekowski, J. Heterocycl.
Chem. 1990, 27, 803–805.
[18]
[19]
5-Fluoro-N-2-methoxyphenyl-1-phenyl-1H-pyrazole-4-carboxamide
(10b): Prepared analogously as described above by using o-anisi-
dine hydrochloride (0.88 g, 5.5 mmol) instead of aniline hydro-
chloride; m.p. 109–111 °C (from ethyl acetate/hexanes); 0.57 g
[20]
[21]
1
(37%). – H NMR: δ ϭ 8.47 (dd, J ϭ 7.9, 1.5 Hz, 1 H), 8.30 (br.
s, 1 H), 8.06 (d, J ϭ 3.0 Hz, 1 H), 7.7 (m, 2 H), 7.53 (t, J ϭ 7.9 Hz,
2 H), 7.43 (t, J ϭ 7.9 Hz, 1 H), 7.08 (td, J ϭ 7.9, 1.5 Hz, 1 H),
7.00 (td, J ϭ 7.9, 1.5 Hz, 1 H), 6.91 (dd, J ϭ 7.9, 1.5 Hz, 1 H),
3.93 (s, 3 H). – 19F NMR: δ ϭ –127.5 (br. s). – MS (CI): m/z
(%) ϭ 312 (100) [Mϩ ϩ 1], 311 (15) [Mϩ], 189 (16). – C17H14FNO2
(311.31): calcd. C 65.59, H 4.53; found C 65.58, H 4.69.
[22]
[23]
[24]
[25]
[26]
[27]
[28]
5-Fluoro-N-3-methoxyphenyl-1-phenyl-1H-pyrazole-4-carboxamide
(10c): Prepared analogously as described above by using m-anisi-
dine hydrochloride (0.88 g, 5.5 mmol) instead of aniline hydro-
chloride; m.p. 120–122 °C (from ethyl acetate/hexanes); 0.65 g
L. Strekowski, S.-Y. Lin, H. Lee, J. C. Mason, Tetrahedron Lett.
1996, 37, 4655–4658.
Y. Kobayashi, I. Kumadaki, Y. Hirose, Y. Hanzawa, J. Org.
Chem. 1974, 39, 1836–1838.
Y. Kobayashi, I. Kumadaki, Acc. Chem. Res. 1978, 11, 197–
1
(42%). – H NMR: δ ϭ 8.05 (d, J ϭ 2.7 Hz, 1 H), 7.7 (m, 2 H),
204.
7.5 (m, 3 H), 7.43 (tt, J ϭ 7.4, 1.2 Hz, 1 H), 7.39 (t, J ϭ 2.4 Hz, 1
H), 7.25 (t, J ϭ 4.1 Hz, 1 H), 7.04 (ddd, J ϭ 8.2, 1.8, 0.9 Hz, 1 H),
6.71 (ddd, J ϭ 8.2, 2.4, 0.9 Hz, 1 H), 3.82 (s, 3 H). – 19F NMR:
δ ϭ –127.3 (br. s). – MS (CI): m/z (%) ϭ 329 (3) [Mϩ ϩ NH4], 312
(100) [Mϩ ϩ 1], 311 (23) [Mϩ], 189 (15). – C17H14FN3O2 (311.31):
calcd. C 65.59, H 4.53; found C 66.01, H 4.74.
[29]
[30]
M. S. South, J. Heterocycl. Chem. 1991, 28, 1013–1016.
J. Kollonitsch, L. Barash, J. Am. Chem. Soc., 1976, 98, 5591–
5593; R. B. Silverman, M. A. Levy, J. Org. Chem. 1980, 45,
815–818; C. W. Fearon, J. A. Rodkey, R. H. Abeles, Biochem-
istry 1982, 21, 3790–3794; P. J. Reider, R. S. Eichen, P. Davis,
V. J. Grenda, A. J. Zambito, E. J. J. Grabowski, J. Org. Chem.
1987, 52, 3326–3334.
W. Dmowski, J. Fluorine Chem. 1982, 20, 589–598.
W. Dmowski, Synthesis 1983, 396–397.
T. Kubota, K. Yamamoto, T. Tanaka, Chem. Lett. 1983, 167–
5-Fluoro-N-4-methoxyphenyl-1-phenyl-1H-pyrazole-4-carboxamide
(10d): Prepared analogously as described above by using p-anisi-
dine hydrochloride (0.88 g, 5.5 mmol) instead of aniline hydro-
chloride; m.p. 163–165 °C (from ethyl acetate/hexanes); 0.90 g
[31]
[32]
[33]
168.
Eur. J. Org. Chem. 2000, 823Ϫ828
827