Journal of the American Chemical Society
Communication
Directing-Group-Assisted Aldehydic C−H Arylations with Aryl
Halides. Eur. J. Org. Chem. 2017, 2017, 5080−5093. (m) Nickel:
Huang, Y.-C.; Majumdar, K. K.; Cheng, C.-H. Nickel-Catalyzed
Coupling of Aryl Iodides with Aromatic Aldehydes: Chemoselective
Synthesis of Ketones. J. Org. Chem. 2002, 67, 1682−1684. (n) Now-
rouzi, N.; Zarei, M.; Roozbin, F. First Direct Access to 2-
hydroxybenzophenones via Nickel-Catalyzed Cross-Coupling of 2-
Hydroxybenzaldehydes with Aryl Iodides. RSC Adv. 2015, 5, 102448−
102453. (o) Vandavasi, J. K.; Hua, X.; Ben Halima, H.; Newman, S. G.
A Nickel-Catalyzed Carbonyl-Heck Reaction. Angew. Chem., Int. Ed.
2017, 56, 15441−15445. (p) Photoredox: Zhang, X.; MacMillan, D.
W. C. Direct Aldehyde C−H Arylation and Alkylation via the
Combination of Nickel, Hydrogen Atom Transfer, and Photoredox
Catalysis. J. Am. Chem. Soc. 2017, 139, 11353−11356. (q) Cobalt: Hu,
Y. L.; Wu, Y. P.; Lu, M. Co (II)-C12 Alkyl Carbon Chain Multi-
Functional Ionic Liquid Immobilized on Nano-SiO2 Nano-SiO2@
CoCl3-C12IL as an Efficient Cooperative Catalyst for C−H Activation
by Direct Acylation of Aryl Halides with Aldehydes. Appl. Organomet.
Chem. 2018, 32, No. e4096.
Anion [B(3,5-Cl2C6H3)4]− at a Rh(I) Centre in Solution and the Solid-
State. Dalton Trans 2013, 42, 12832−12835. (f) Koenig, A.; Fischer, C.;
Alberico, E.; Selle, C.; Drexler, H.-J.; Baumann, W.; Heller, D. Oxidative
Addition of Aryl Halides to Cationic Bis(phosphane)rhodium
Complexes: Application in C−C Bond Formation. Eur. J. Inorg.
Chem. 2017, 2017, 2040−2047.
(18) For insertion of aldehyde CO π-bonds into aryl−rhodium σ-
bonds and related β-aryl eliminations, see: (a) Krug, C.; Hartwig, J. F.
Direct Observation of Aldehyde Insertion into Rhodium−Aryl and −
Alkoxide Complexes. J. Am. Chem. Soc. 2002, 124, 1674−1679.
(b) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. Direct Observation of β-
Aryl Eliminations from Rh(I) Alkoxides. J. Am. Chem. Soc. 2006, 128,
3124−3125.
(19) For O−H reductive elimination of metal alkoxides, see: (a)
Rhodium: Milstein, D. Carbon-hydrogen vs. oxygen-hydrogen
reductive elimination of methanol from a metal complex. Which is a
more likely process? J. Am. Chem. Soc. 1986, 108, 3525−3526. (b)
Iridium: Glueck, D. S.; Winslow, L. J. N.; Bergman, R. G. Iridium
Alkoxide and Amide Hydride Complexes. Synthesis, Reactivity, and the
Mechanism of Oxygen-Hydrogen and Nitrogen-Hydrogen Reductive
Elimination. Organometallics 1991, 10, 1462−1479. (c) Blum, O.;
Milstein, D. Direct Observation of O−H Reductive Elimination from
IrIII Complexes. Angew. Chem., Int. Ed. Engl. 1995, 34, 229−231.
(20) Aldehydes can be directly converted to alkyl ketones under the
conditions of rhodium-catalyzed alkene hydroacylation; however,
intermolecular variants typically require use of aldehydes with β-
chelating groups to suppress catalyst deactivation via aldehyde
decarbonylation. For a review, see: Leung, J. C.; Krische, M. J. Catalytic
Intermolecular Hydroacylation of C-C π-Bonds in the Absence of
Chelation Assistance. Chem. Sci. 2012, 3, 2202−2209.
(12) For an excellent review on regiodivergent catalysis to form
constitutionally isomeric products, see: Funken, N.; Zhang, Y.-Q.;
Gansauer, A. Regiodivergent Catalysis: A Powerful Tool for Selective
Catalysis. Chem. - Eur. J. 2017, 23, 19−32.
(13) Mechanistically related branched-to-linear isomerizations appear
as undesired side reactions in cross-couplings of secondary alkyl
partners. For recent discussions, see: (a) Han, C.; Buchwald, S. L.
Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides
and Chlorides. J. Am. Chem. Soc. 2009, 131, 7532−7533. (b) Yang, Y.;
Mustard, T. J. L.; Cheong, P. H.-Y.; Buchwald, S. L. Palladium-
Catalyzed Completely Linear-Selective Negishi Cross-Coupling of
Allylzinc Halides with Aryl and Vinyl Electrophiles. Angew. Chem., Int.
Ed. 2013, 52, 14098−14102. (c) Zhang, K.-F.; Christoffel, F.; Baudoin,
O. Barbier−Negishi Coupling of Secondary Alkyl Bromides with Aryl
and Alkenyl Triflates and Nonaflates. Angew. Chem., Int. Ed. 2018, 57,
1982−1986. (d) Cherney, A. H.; Hedley, S. J.; Mennen, S. M.; Tedrow,
J. S. Organometallics 2019, 38, 97−102.
(21) The direct conversion of aldehydes to alkyl ketones has been
achieved via metal-catalyzed C−H activation-initiated carbonyl Heck
reactions; however, such processes require directing groups and
stoichiometric oxidants. For a review, see: Pan, C.; Jia, X.; Cheng, J.
Transition-Metal-Catalyzed Synthesis of Aromatic Ketones via Direct
C−H Bond Activation. Synthesis 2012, 44, 677−685.
(22) For selected examples of the direct metal-catalyzed conversion of
primary alcohols to ketones by way of transient aldehydes, see:
(a) Shibahara, F.; Bower, J. F.; Krische, M. F. Diene Hydroacylation
from the Alcohol or Aldehyde Oxidation Level via Ruthenium-
Catalyzed C-C Bond-Forming Transfer Hydrogenation: Synthesis of
β,γ-Unsaturated Ketones. J. Am. Chem. Soc. 2008, 130, 14120−14122.
(b) Verheyen, T.; van Turnhout, L.; Vandavasi, J. K.; Isbrandt, E. S.; De
Borggraeve, W. M.; Newman, S. G. Ketone Synthesis by a Nickel-
Catalyzed Dehydrogenative Cross-Coupling of Primary Alcohols. J.
(14) Ligand-dependent partitioning of linear and branched C−C
coupling products was observed in Suzuki−Miyaura couplings of 3,3-
disubstituted and 3-monosubstituted allylboronates with (hetero)aryl
halides: Yang, Y.; Buchwald, S. L. Ligand-Controlled Palladium-
Catalyzed Regiodivergent Suzuki−Miyaura Cross-Coupling of Allyl-
boronates and Aryl Halides. J. Am. Chem. Soc. 2013, 135, 10642−
10645.
(15) For regiodivergent diene−carbonyl reductive couplings, see:
̈
Kopfer, A.; Sam, B.; Breit, B.; Krische, M. J. Regiodivergent Reductive
Coupling of 2-Substituted Dienes to Formaldehyde Employing
Ruthenium or Nickel Catalysts: Hydrohydroxymethylation via Trans-
fer Hydrogenation. Chem. Sci. 2013, 4, 1876−1880.
(16) For regiodivergent styrene−carbonyl reductive couplings, see:
Xiao, H.; Wang, G.; Krische, M. J. Regioselective Hydrohydroxyalky-
lation of Styrene with Primary Alcohols or Aldehydes via Ruthenium
Catalyzed C-C Bond Forming Transfer Hydrogenation. Angew. Chem.,
Int. Ed. 2016, 55, 16119−16122.
(17) For studies on the oxidative addition of aryl and vinyl halides to
rhodium(I) complexes, see: (a) Monophosphine complexes: Jiao, Y.;
Brennessel, W. W.; Jones, W. D. Oxidative Addition of Chlorohy-
drocarbons to a Rhodium Tris(pyrazolyl)borate Complex. Organo-
metallics 2015, 34, 1552−1566. (b) Townsend, N. S.; Chaplin, A. B.;
Abu Naser, M.; Thompson, A. L.; Rees, N. H.; Macgregor, S. A.; Weller,
A. S. Reactivity of the Latent 12-Electron Fragment [Rh(PiBu3)2]+ with
Aryl Bromides: Aryl−Br and Phosphine Ligand C−H Activation. Chem.
- Eur. J. 2010, 16, 8376−8389. (c) Chen, S.; Li, Y.; Zhao, J.; Li, X.
Chelation-Assisted Carbon-Halogen Bond Activation by a Rhodium(I)
Complex. Inorg. Chem. 2009, 48, 1198−1206. (d) Douglas, T. M.;
Chaplin, A. B.; Weller, A. S. Dihydrogen Loss from a 14-Electron
Rhodium(III) Bis-Phosphine Dihydride To Give a Rhodium(I)
Complex That Undergoes Oxidative Addition with Aryl Chlorides.
Organometallics 2008, 27, 2918−2921. (e) Bisphosphine complexes:
Pike, S. D.; Weller, A. S. C−Cl Activation of the Weakly Coordinating
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX