(m, 42H, βCD H, MeO), 3.33 (m, 2H, C4A, hexyl H6), 3.06 (m,
2H, H6A, hexyl H6Ј), 2.8 (m, 1H, C6AЈ), 2.55 (m, 1H, hexyl H1),
2.40 (m, 1H, hexyl H1Ј), 1.1–1.5 (m, 8H, hexyl H2–5); 1H
ROESY NMR data: δH 3.4–4.0 (βCD H) shows cross-peaks
with 4.16 (cubyl HЈ), 4.30 (cubyl H), 4.16 shows cross-peaks
with 3.4–4.0 (βCD H), 4.30 (cubyl H) shows cross-peaks with
3.4–4.0 (βCD H).
peaks with 1.67 (adamantyl H4Ј), 1.74 (adamantyl H4), 1.84
(adamantyl H2), 2.04 (adamantyl H3).
1
Solution G containing 5/5Ј. 1D H NMR data: δH 5.1 (br s,
7H, H1), 3.5–4.0 (m, 39H, βCD H), 3.32 (t, J = 9.0 Hz, 1H,
H4A), 3.25 (m, 1H, hexyl H6), 3.0 (m, 2H, hexyl H6Ј, H6A), 2.79
(dd, J = 9.0, 12.0 Hz, 1H, H6A), 2.56 (m, 1H, hexyl H1), 2.28
(m, 4H, hexyl H1Ј, adamantyl H3), 1.94 (d, J = 12.6 Hz, 3H,
adamantyl 4), 1.84 (s, 6H, adamantyl H2), 1.79 (d, J = 12.6 Hz,
3H, adamantyl H4Ј), 1.0–1.8 (m, 8H, hexyl H2–H5); 1H
ROESY NMR data: δH 1.79 (adamantyl H4Ј) shows cross-
peaks with 3.7–4.0 (βCD H), 1.84 (adamantyl H2) shows
cross-peaks with 3.5–4.0 (βCD H), 2.28 (adamantyl H3) shows
cross-peaks with 3.7–4.0 (βCD H).
1
Solution B containing 2/2Ј and 6. 1D H NMR data: δH 5.04
(br s, 7H, H1), 4.20 (m, 2H, cubyl H), 4.12 (m, 4H, cubyl HЈ),
3.5–4.0 (m, 42H, βCD H, MeO), 3.37 (t, J = 9.6 Hz, 1H, H4A),
3.17 (m, 3H, H6A, hexyl H6), 2.87 (m, 1H, H6AЈ), 2.67 (m, 1H,
hexyl H1), 2.47 (m, 1H, hexyl H1Ј), 2.04 (br s, 3H, adamantyl
H3), 1.86 (br s, 6H, adamantyl H2), 1.75 (d, J = 12.0 Hz, 3H,
adamantyl H4), 1.64 (d, J = 12.0 Hz, 3H, adamantyl H4Ј), 1.2–
1
1
Solution H containing 5/5Ј and 6. 1D H NMR data: δH 5.1
1.5 (m, 8H, hexyl H2–H5); H ROESY NMR data: δH 1.64
(br s, 7H, H1), 3.5–4.0 (m, 39H, βCD H), 3.37 (t, J = 9.0 Hz,
1H, H4A), 3.23 (m, 1H, hexyl H6), 3.16 (m, 1H, hexyl H6Ј), 3.07
(d, J = 12.0 Hz, 1H, H6A), 2.80 (dd, J = 9.0, 12.0 Hz, 1H, H6A),
2.57 (m, 1H, hexyl H1), 2.29 (m, 1H, hexyl H1Ј), 2.17 (br s, 3H,
adamantyl H3), 1.95 (br s, 6H, adamantyl H3 of 6), 1.84 (m,
9H, adamantyl H4, adamantyl H2), 1.79 (m, 15H, adamantyl
H2 of 6, adamantyl H4Ј), 1.67 (br s, 6H, adamantyl H4 of 6),
(adamantyl H4Ј) shows cross-peaks with 3.5–4.0 (βCD H), 1.75
(adamantyl H4) shows cross-peaks with 3.5–4.0 (βCD H),
1.86 (adamantyl H2) shows cross-peaks with 3.5–4.0 (βCD
H), 2.04 (adamantyl H3) shows cross-peaks with 3.5–4.0 (βCD
H), 3.54 (βCD H) shows cross-peaks with 1.64 (adam-
antyl H4Ј), 1.75 (adamantyl H4), 1.86 (adamantyl H2), 2.04
(adamantyl H3).
1
1.0–1.8 (m, 8H, hexyl H2–5); H ROESY NMR data: δH 1.67
1
(adamantyl H4 of 6) shows cross-peaks with 3.8–4.0 (βCD H),
1.8 (adamantyl H4Ј) shows cross-peaks with 3.8–4.0 (βCD
H), 1.84 (adamantyl H2) shows cross-peaks with 3.5–4.0
(βCD H), 2.17 (adamantyl H3) shows cross-peaks with 3.8–4.0
(βCD H).
Solution C containing 3/3Ј. 1D H NMR data: δH 5.04 (br s,
7H, H1), 3.5–4.4 (m, 46H, cubyl H, βCD H, MeO), 3.42 (t,
J = 9.0 Hz, 1H, H4A), 3.19 (m, 3H, H6A, hexyl H6), 2.92 (m,
1H, H6AЈ), 2.64 (m, 2H, hexyl H1), 1.1–1.5 (m, 14H, hexyl
H2–H5, Me); 1H ROESY NMR data: δH 1.3 (Me) shows
cross-peaks with 3.5–4.0 (βCD H), 4.0–4.2 (cubyl H), 3.5–4.0
(βCD H) shows cross-peaks with 1.3 (Me), 4.0–4.2 (cubyl H),
4.0–4.2 (cubyl H) shows cross-peaks with 1.3 (Me), 3.5–4.0
(βCD H).
Acknowledgements
We are grateful to the Australian Research Council and the
University of Adelaide for supporting this research. We thank
Nihon Shokuhin Kako Co. for a gift of βCD.
1
Solution D containing 3/3Ј and 6. 1D H NMR data: δH 5.05
(br s, 7H, H1), 3.5–4.2 (m, 46H, cubyl H, βCD H, MeO), 3.36
(t, J = 9.0 Hz, 1H, H4A), 3.10 (m, 3H, H6A, hexyl H6), 2.81 (dd,
J = 7.2, 14.3 Hz, 1H, H6AЈ), 2.59 (m, 1H, hexyl H1), 2.42 (m,
1H, hexyl H1Ј), 2.05 (br s, 3H, adamantyl H3), 1.87 (br s, 6H,
adamantyl H2), 1.76 (d, J = 12 Hz, 3H, adamantyl H4), 1.61 (d,
J = 12 Hz, 3H, adamantyl H4Ј), 1.1–1.4 (m, 14H, hexyl H2–H5,
References
1 S. D. Kean, B. L. May, P. Clements, S. F. Lincoln and C. J. Easton,
J. Chem. Soc., Perkin Trans. 2, 1999, 1257.
2 H. Ikeda, M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda,
F. Toda and A. Ueno, J. Am. Chem. Soc., 1996, 118, 10980.
3 H. Ikeda, M. Nakamura, N. Ise, F. Toda and A. Ueno, J. Org.
Chem., 1997, 62, 1411.
4 R. Corradini, A. Dossena, G. Galaverna, R. Marchelli, A. Panagia
and G. Sartor, J. Org. Chem., 1997, 62, 6283.
5 A. Ueno, A. Ikeda, H. Ikeda, T. Ikeda and F. Toda, J. Org. Chem.,
1999, 64, 382.
1
Me); H ROESY NMR data: δH 1.61 (adamantyl H4Ј) shows
cross-peaks with 3.8 (H3), 1.76 (adamantyl H4) shows cross-
peaks with 3.8 (H3), 1.87 (adamantyl H2) shows cross-peaks
with 3.8 (H3), 2.05 (adamantyl H3) shows cross-peaks with 3.8
(H3), 3.8 (H3) shows cross-peaks with 1.61 (adamantyl H4Ј),
1.76 (adamantyl H4), 1.87 (adamantyl H2), 2.05 (adamantyl
H3).
6 C. J. Easton and S. F. Lincoln, Modified Cyclodextrins, Scaffolds and
Templates for Supramolecular Chemistry, Imperial College Press,
London, UK, 1999.
Solution E containing 4/4Ј. 1D 1H NMR data: δH (D2O) 5.00
(br s, 14H, H1), 2.5–4.4 (m, 142H, cubyl H, βCD H, hexyl
7 K. A. Connors, Chem. Rev., 1997, 97, 1325.
8 M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.
9 K. Redman, B. L. May, S. D. Kean, P. Clements, C. J. Easton and
S. F. Lincoln, J. Chem. Soc., Perkin Trans. 2, 1999, 1711.
10 V. Rüdiger, A. Eliseev, S. Simonova, H.-J. Schneider, M. J.
Blandamer, P. Cullis and A. J. Meyer, J. Chem. Soc., Perkin Trans. 2,
1996, 2119.
1
H1, hexyl H6), 1.1–1.8 (m, 16H, hexyl H2–H5); H ROESY
NMR data: δH 4.1–4.4 (cubyl H) shows cross-peaks with 3.5–
4.0 (βCD H) and vice versa.
Solution F containing 4/4Ј and 6. 1D 1H NMR data: δH 5.06
(s, 14H, H1), 4.16 (s, 6H, cubyl H), 4.01 (t, J = 9.2 Hz, 2H,
H5A), 3.9–3.5 (m, 76H, H2–H6), 3.40 (t, J = 9.2 Hz, 2H, H4A),
3.30 (d, J = 13.2 Hz, 2H, H6A), 3.18 (m, 4H, hexyl H6), 3.01
(m, 2H, H6AЈ), 2.80 (m, 2H, hexyl H1), 2.68 (m, 2H, hexyl
H1Ј), 2.04 (s, 6H, adamantyl H3), 1.84 (s, 12H, adamantyl H2),
1.74 (d, J = 11 Hz, 6H, adamantyl H4), 1.67 (d, J = 11 Hz, 6H,
11 J. N. S. Evans, Biomolecular NMR Spectroscopy, Oxford University
Press, Oxford, 1995.
12 B. L. May, S. D. Kean, C. J. Easton and S. F. Lincoln, J. Chem. Soc.,
Perkin Trans. 1, 1997, 3157.
13 P. E. Eaton, N. Nordari, J. Tsanaksidis and S. P. Upadhyaya,
Synthesis, 1995, 502.
14 M. Bliese and J. Tsanaktsidis, Aust. J. Chem., 1997, 50, 189.
15 M. Bliese, D. Cristiano and J. Tsanaktsidis, Aust. J. Chem., 1997, 50,
1043.
16 J. Tsanaktsidis, in Advances in Strain in Organic Chemistry, Vol. 6,
ed. B. Halton, JAI, London, 1997, p. 67.
17 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
18 L. M. Harwood, Aldrichimica Acta, 1985, 18, 25.
19 A. J. Shusterman, P. J. McDougal and A. Glasfeld, J. Chem. Educ.,
1997, 74, 1222.
1
adamantyl H4Ј), 1.2–1.6 (m, 16H, hexyl H2–H5); H ROESY
NMR data: δH 1.2–1.6 (hexyl H2–H5) shows cross-peaks with
3.18 (hexyl H6), 1.67 (adamantyl H4Ј) shows cross-peaks with
3.6–3.9 (H3, H5), 1.74 (adamantyl H4) shows cross-peaks
with 3.6–3.9 (H3, H5), 1.84 (adamantyl H2) shows cross-
peaks with 3.6–3.9 (H3, H5), 2.04 (adamantyl H3) shows cross-
peaks with 3.6–3.9 (H3, H5), 3.18 (hexyl H6) shows cross-peaks
with 1.2–1.6 (hexyl H2–H5), 3.6–3.9 (H3, H5) shows cross-
Paper a905390e
J. Chem. Soc., Perkin Trans. 1, 2000, 463–469
469