ORGANIC
LETTERS
2001
Vol. 3, No. 15
2395-2398
Remote C−H Activation of
Phenyl-Substituted Alkenes by
BH ‚THF: Mechanism and Applications
3
Jesu´s A. Varela, Diego Pen˜a, Bernd Goldfuss,† Kurt Polborn, and Paul Knochel*
Department Chemie, Ludwig-Maximilians-UniVersita¨t, Butenandtstrasse 5-13 (Haus F),
81377 Mu¨nchen, Germany
Received June 1, 2001
ABSTRACT
The hydroboration of tetrasubstituted alkenes and, in particular, bicyclic alkenes with BH ‚THF at 50 °C provides, via a highly stereoselective
3
1,2-rearrangement and a remote C−H activation, a diol in which the relative stereochemistry of three centers has been controlled. A mechanistic
study provides general rules for remote C−H activation and leads to new synthetic applications.
The activation of C-H bonds is an important synthetic target
since it opens new possibilities for functionalizing unacti-
vated C-H bonds. Most of these C-H activations have been
performed using transition metal mediated reactions or
transition metal catalyzed reactions.1 Recently, we have
shown that allylic C-H bonds can be stereoselectively
functionalized using a thermal rearrangement of tertiary
organoboranes.2-4 This reaction has been applied to both
open-chain and cyclic systems, allowing the diastereoselec-
tive preparation of a variety of compounds. Thus, the thermal
rearrangement of a tertiary organoborane of type 1 furnishes,
with high selectivity via a tentative borane-olefin complex
2, the more stable secondary organoborane 3. A highly
preferential migration of the hydrogen atom Ha (over Hb)
has been observed. The migration of Ha leads to the most
stable borane-olefin complex (R and Rs are in cis arrange-
ment; Scheme 1). We have also discovered that a remote
C-H activation can be performed with tetrasubstituted
alkenes bearing bulky substituents, such as 4.4 Its treatment
with borane-THF (50 °C; 12 h) provides cyclic organobo-
rane 5, which after oxidative workup (NaOH, H2O2) provides
the diol 6 in 80% yield (Scheme 1). Herein, we wish to
† Organisch-Chemisches Institut der Universita¨t Heidelberg, Im Neuen-
heimer Feld 270, D-29120 Heidelberg, Germany.
(1) (a) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104,
352. (b) Ryabov, A. D. Chem. ReV. 1990, 90, 403. (c) Adam, W.; Nestler,
B. Angew. Chem. Int. Ed. Engl. 1993, 32, 733. (d) Murai, S.; Kaikiuchi,
F.; Sekiine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature
1993, 366, 529. (e) Arndtsen, B. A.; Bergman, R. G. Science 1995, 270,
1970. (f) Crabtree, R. H. Chem. ReV. 1995, 95, 987. (g) Rispens, M. T.;
Zardervan, C.; Feringa, B. L. Tetrahedron: Asymmetry 1995, 6, 661. (h)
Sonoda, M.; Kakiuchi, F.; Chatani, N.; Murai, S. J. Organomet. Chem.
1995, 504, 151. (i) Trost, B. M.; Iwi, K.; Davies, I. W. J. Am. Chem. Soc.
1995, 117, 5371. (j) Williams, N. A.; Uchimaru, Y.; Tanaka, M. J. Chem.
Soc., Chem. Commun. 1995, 1129. (k) Alaimo, P. J.; Arndtsen, B. A.;
Bergman, R. G. J. Am. Chem. Soc. 1997, 119, 5269. (l) Grigg, R.; Savic,
V. Tetrahedron Lett. 1997, 38, 5737. (m) Luecke, H. F.; Bergman, R. G.
J. Am. Chem. Soc. 1997, 119, 11538. (n) Miyaluji, A.; Katsuki, T.
Tetrahedron 1998, 54, 19339. (o) Johnson, J. A.; Sames, D. J. Am. Chem.
Soc. 2000, 122, 6321. (p) Davies, H. M. L.; Antoulinakis, E. G. J.
Organomet. Chem. 2001, 617, 47. (q) Davies, H. M. L.; Ren, P. J. Am.
Chem. Soc. 2001, 123, 2070. (r) Dycker, G. Angew. Chem. Int. Ed. 1999,
28, 1698.
(2) Some remote C-H activations of organoboranes have been de-
scribed: (a) Ko¨ster, R.; Larbig, W.; Rotermund, G. W. Liebigs Ann. 1965,
682, 21. (b) Ko¨ster, R.; Rotermund, G. Angew. Chem. 1960, 72, 563. (c)
Ko¨ster, R.; Benedikt, G.; Fenzl, W.; Reinert, K. Liebisgs Ann. 1967, 702,
197.
(3) (a) Lhermitte, F.; Knochel, P. Angew. Chem., Int. Ed. 1998, 37, 2460.
(b) Bromm, L. O.; Laaziri, H.; Lhermitte, F.; Harms, K.; Knochel, P. J.
Am. Chem. Soc. 2000, 122, 10218.
(4) Laaziri, H.; Bromm, L. O.; Lhermitte, F.; Gschwind, R. M.; Knochel,
P. J. Am. Chem. Soc. 1999, 121, 6940.
10.1021/ol016215a CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/06/2001